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Dedicated to Stamatis Vassiliadis (1951 – 2007)

Integrity was his compass
Science his instrument

Advancement of humanity his final goal

Stamatis Vassiliadis

Professor at Delft University of Technology
IEEE Fellow - ACM Fellow

Member of the Dutch Academy of Sciences - KNAW

passed away on April 7, 2007.

He was an outstanding computer scientist and due to his vivid and hearty
manner he was a good friend to all of us.

Born in Manolates on Samos (Greece) he established in 2001 the successful series
of SAMOS conferences and workshops.

These series will not be the same without him.
We will keep him and his family in our hearts.



Preface

The SAMOS workshop is an international gathering of highly qualified researchers
from academia and industry, sharing their ideas in a 3-day lively discussion. The
workshop meeting is one of two co-located events—the other event being the
IC-SAMOS. The workshop is unique in the sense that not only solved research
problems are presented and discussed, but also (partly) unsolved problems and
in-depth topical reviews can be unleashed in the scientific arena. Consequently,
the workshop provides the participants with an environment where collaboration
rather than competition is fostered.

The workshop was established in 2001 by Professor Stamatis Vassiliadis with
the goals outlined above in mind, and located in one of the most beautiful islands
of the Aegean. The rich historical and cultural environment of the island, coupled
with the intimate atmosphere and the slow pace of a small village by the sea in
the middle of the Greek summer, provide a very conducive environment where
ideas can be exchanged and shared freely. The workshop, since its inception, has
emphasized high-quality contributions, and it has grown to accommodate two
parallel tracks and a number of invited sessions.

This year, the workshop celebrated its eighth anniversary, and it attracted 24
contributions carefully selected out of 62 submitted works for an acceptance rate
of 38.7%. Each submission was thoroughly reviewed by at least three reviewers
and considered by the international Program Committee during its meeting at
Delft in March 2008.

Indicative of the wide appeal of the workshop is the fact that the submit-
ted works originated from a wide international community that included Bel-
gium, Brazil, Czech Republic, Finland, France, Germany, Greece, Ireland, Italy,
Lithuania, The Netherlands, New Zealand, Republic of Korea, Spain, Switzer-
land, Tunisia, UK, and the USA. Additionally, two invited sessions on topics of
current interest addressing issues on “System Level Design for Heterogeneous
Systems” and “Programming Multicores” were organized and included in the
workshop program. Each special session used its own review procedure, and
was given the opportunity to include relevant work from the regular workshop
program. Three such papers were included in the invited sessions.

This volume is dedicated to the memory of Stamatis Vassiliadis, the founder
of the workshop, a sharp and visionary thinker, and a very dear friend, who
unfortunately is no longer with us.

We hope that the attendees enjoyed the SAMOS VIII workshop in all its
aspects, including many informal discussions and gatherings.

July 2008 Nikitas Dimopoulos
Stephan Wong

Mladen Berekovic
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Timo D. Hämäläinen Tampere University of Technology, Finland
Mladen Berekovic Technical University of Braunschweig, Germany

Program Committee

Aneesh Aggarwal Binghamton University, USA
Amirali Baniasadi University of Victoria, Canada
Piergiovanni Bazzana ATMEL, Italy
Jürgen Becker Universität Karlsruhe, Germany
Koen Bertels Delft University of Technology, The Netherlands
Samarjit Chakraborty University of Singapore, Singapore
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Streubühr, M.
Strydis, C.
Suhonen, J.
Suri, T.

Takala, J.
Tatas, K.
Tavares, M.
Teich, J.
Theodoridis, G.
Theodoropoulos, D.
Tian, C.
Tol, M. van
Truscan, D.
Tsompanidis, I.
Vassiliadis, N.
Velenis, D.
Villavieja, C.
Waerdt, J. van de
Weiß, J.
Westermann, P.
Woh, M.
Woods, R.
Wu, D.
Yang, C.
Zebchuk, J.
Zebelein, C.



Table of Contents

Beachnote

Can They Be Fixed: Some Thoughts After 40 Years in the Business
(Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Yale Patt

Architecture

On the Benefit of Caching Traffic Flow Data in the Link Buffer . . . . . . . . 2
Konstantin Septinus, Christian Grimm, Vladislav Rumyantsev, and
Peter Pirsch

Energy-Efficient Simultaneous Thread Fetch from Different Cache
Levels in a Soft Real-Time SMT Processor . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Can They Be Fixed: Some Thoughts After 40 Years in
the Business

Yale Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin

patt@ece.utexas.edu

Abstract. If there is one thing the great Greek teachers taught us, it was to ques-
tion what is, and to dream about what can be. In this audience, unafraid that no
one will ask me to drink the hemlock, but humbled by the realization that I am
walking along the beach where great thinkers of the past have walked, I nonethe-
less am willing to ask some questions that continue to bother those of us who are
engaged in education: professors, students, and those who expect the products of
our educational system to be useful hires in their companies.

As I sit in my office contemplating which questions to ask between the start
of my talk and when the dinner is ready, I have come up with my preliminary
list. By the time July 21 arrives and we are actually on Samos, I may have other
questions that seem more important. Or, you the reader may feel compelled to
pre-empt me with your own challenges to conventional wisdom, which of course
would be okay, also.

In the meantime, my preliminary list:

• Are students being prepared for careers as graduates? (Can it be fixed?)
• Are professors who have been promoted to tenure prepared for careers as

professors? (Can it be fixed?)
• What is wrong with education today? (Can it be fixed?)
• What is wrong with research today? (Can it be fixed?)
• What is wrong with our flagship conferences? and Journals? (Can they be

fixed?)

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On the Benefit of Caching Traffic Flow

Data in the Link Buffer

Konstantin Septinus1, Christian Grimm2,
Vladislav Rumyantsev1, and Peter Pirsch1

1 Institute of Microelectronic Systems, Appelstr. 4, 30167 Hannover, Germany
2 Regional Computing Centre for Lower Saxony, Schloßwender Str. 5,

30159 Hannover, Germany
{septinus,pirsch}@ims.uni-hannover.de

{grimm}@rvs.uni-hannover.de

Abstract. In this paper we review local caching of TCP/IP flow context
data in the link buffer or a comparable other local buffer. Such connec-
tion cache is supposed to be a straight-forward optimization strategy for
look-ups of flow context data in a network processor environment. The
connection cache can extend common table-based look-up schemes and
also be implemented in SW. On the basis of simulations with different IP
network traces, we show a significant decrease of average search times.
Finally, well-suited cache and table sizes are determined, which can be
used for a wide range of IP network systems.

Keywords: Connection Cache, Link Buffer, Network Interface, Table
Lookup, Transmission Control Protocol, TCP.

1 Introduction

The rapid evolution of the Internet with its variety of applications is a remark-
able phenomenon. Over the past decade, the Internet Protocol (IP) established
being the de facto standard for transferring data between computers all over the
world. In order to support different applications over an IP network, multiple
transport protocols where developed on top of IP. The most prominent one is
the Transmission Control Protocol (TCP), which was initially introduced in the
1970s for connection-oriented and reliable services. Today, many applications
such as WWW, FTP or Email rely on TCP even though processing TCP re-
quires more computational power than competitive protocols, due to its inherent
connection-oriented and reliable algorithms.

Breakthroughs in network infrastructure technology and manufacturing tech-
niques keep enabling steadily increasing data rates. For example, here are optical
fibers together with DWDM [1]. This leads to a widening gap between the avail-
able network bandwidth, user demands and computational power of a typical
off-the-shelf computer system [2]. The consequence is that a traditional desktop
computer cannot properly handle emerging rates of multiple Gbps (Gigabit/s).
Conventional processor and server systems cannot comply with up-coming de-
mands and require special extensions such as accelerators for network and I/O

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 2–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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CPUCPU

CPU CPU

ext. main memory

I/O
ACC

link
buffer

network PE

packet
queues

chip data copy

Fig. 1. Basic Approach for a Network Coprocessor

protocol operations. Fig. 1 depicts the basic architecture of a conceivable network
coprocessor (I/O ACC).

One major issue for every component in a high-performance IP-based net-
work is an efficient look-up and management of the connection context for each
data flow. Particularly in high-speed server environments storing, looking-up
and managing of connection contexts has a central impact on the overall per-
formance. Similar problems arise for high-performance routers [3]. In this paper
we denote our connection context cache extension rather for end systems than
for routers. We believe that future requirement for those systems will increase
in a way which makes it necessary for a high-performance end system to be
able to process a large number of concurrent flows, similar to a router. This will
become true especially for applications and environments with high numbers of
interacting systems, such as peer to peer networks or cluster computing.

In general, the search based on flow-identifiers like IP addresses and appli-
cation ports can possibly break down the performance caused by long search
delays or unwanted occupation of the memory bandwidth. Our intention here is
to review the usage of a connection context cache in the local link buffer in order
to fasten up context look-ups. The connection context cache can be combined
with traditional hash table-based look-up schemes. We assume a generic system
architecture and provide analysis results in order to optimize table and cache
sizes in the available buffer space.

The remainder of this paper is organized as follows. In section 2, we state the
nature of the problem and discuss related work. Section 3 presents our approach
for fastening up the search of connection contexts. Simulation results and a sizing
guideline example for the algorithm are given in section 4. Section 5 provides
conclusions that can be drawn from our work. Here, we also try to point out some
of the issues that would come along with a explicit system implementation.
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2 Connection Context Searching Revisited

A directed data stream between two systems can be represented by a so-called
flow. A flow is defined as a tuple of the five elements {source IP address, source
port number, destination IP address, destination port number, protocol ID}. The
IP addresses indicate the two communicating systems involved, the port numbers
of the respective processes, and the protocol ID the transport protocol used in
this flow. We remark that only TCP is considered as a transport protocol in
this paper. However, our approach can be easily extended to other protocols by
regarding the respective protocol IDs.

From a network perspective, the capacity of the overall system in terms of
handling concurrent flows is obviously an important property. From our point of
view, an emerging server system should be capable to store data for multiples of
thousand or even ten thousands flows simultaneously in order to support future
high-performance applications. Molinero-Fernandez et al. [4] estimated that, for
example, on an emerging OC-192 link, 31 million look-ups and 52 thousand
new connections per second can be expected in a network node. These numbers
constitute the high demands on a network processing engine. A related property
of the system is the time which is required for looking-up a connection context.

Before the processing of each incoming TCP segment, the respective data flow
has to be identified. This is done by checking the IP and TCP header data for
IP addresses and application ports for both, source and destination. This iden-
tification procedure is a search over previously stored flow-specific connection
context data. The size for one connection context depends on the TCP imple-
mentation, common values would be a size between S = 64 and S = 256 Byte.
It is appropriate to store most of the flow data in the main memory. But how
can fast access to the data be guaranteed?

Search functions can be efficiently solved by dedicated hardware. One com-
monly used core for search engines on switches and routers is a CAM (Context
Addressable Memory). CAMs can significantly reduce search time [5]. This is
possible as long as static protocol information is regarded which is typically
true for data flows of several packets, e.g. for file transfers or data streams of
some kilobytes and above. We did not consider a CAM-based approach for our
look-up algorithm on a higher protocol level, because compared to software ori-
ented implementations CAMs tend to be more inflexible and thus not well-suited
for dynamic protocols such as TCP. Additionally, the usage of CAMs requires
high costs and high power consumption. Our approach based on hash table is
supposed to be a memory efficient alternative to CAMs with an almost equally
effective search time for specific applications [6].

Using ideal values and hashes the search approaches O(1) time. During the
past two decades there was an ongoing discussion about the hash key itself.
In [7, 8] the differences in the IP hash function implementation are discussed.
We believe the choice of very specific hash functions comes second and should
be considered for application-specific optimizations only. As a matter of course,
the duration of a look-up is significantly affected by the size of the tables.
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Furthermore, a caching mechanism that enables immediate access to the re-
cently used sets of connection contexts can also provide a speed-up. Linux-based
implementations use a hash table and additionally, the network stack actively
checks if the incoming segment belongs to the last used connection [9]. This
method can be accelerated by extending the caching mechanism in a way that
several complete connection contexts are cached. Yang et al. [10] adopted an
LRU-based (Least Recently Used) replacement policy in their connection cache
design. Their work provides useful insights of connection caching analysis. For
applications with a specific distribution of data flows such a cache implementa-
tion can achieve a high speed-up. However, for rather equally distributed traffic
load the speed-up is expected to be less. The overhead for the LRU replacement
policy is additionally not negligible. This is in particular true when cache sizes
of 128 and more are considered. Another advantage of our approach is that such
a scheme can be implemented in software more easily. This is our motivation for
using a simple queue as replacement policy, instead.

Summarizing, accesses on stored connection context data leads to a high la-
tency based on delays of a typical main memory structure. Hence, we discuss
locally caching of connection context in the link buffer or a comparable local
memory of the network coprocessor. Link buffers are usually used by the net-
work interface to hold data from input and output queues.

3 Connection Cache Approach

In this section we cover the basic approach of the implemented look-up scheme. In
order to support next-generation network applications, we assume that a more or
less specialized hardware extension or network coprocessors also will be standard
on tomorrows computers and end systems. According to the architecture in
Fig. 1, network processing engines parse the protocol header, update connection
data and initiate payload transfers.

Based on the expected high number of data flows, storing the connection
contexts in the external main memory is indispensable. However, using some
space in the link buffer to manage recent or frequently used connection contexts
provides a straight-forward optimization step. The link buffer is supposed to
be closely coupled with the network processing engine and allows much faster
access. In particular, this is self-explanatory in the case of on-chip SRAM. For
instance, compare a latency of 5 with main memory latency of more than 100
clock cycles.

We chose to implement the connection cache with a queue-based or LRL
(Least Recently Loaded) scheme. A single flow shall only appear once in the
queue. The last element in the queue automatically pops out as soon as a new
one arrives. This implies that even a frequently used connection pops out of the
cache after a certain number of new arriving data flows, opposed to a LRU-based
replacement policy. All queue elements are stored in the link buffer in order to
enable fast access to them. The search for the queue elements is supposed to be
functioned with an hash.
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Let C be the number of cached contexts. Then, we assumed a minimal hash
table size for the cached flows of 2×C entries. This dimensioning is more or less
arbitrary, but it is an empirical value which should be applicable in order to avoid
a high number of collisions. The hash table root entries are also stored in the
link buffer. A root entry consists of a pointer to an element in the queue. After a
cache miss, searching contexts in the main memory is supposed to be made over
a second table. Its size is denoted by T . Hence, for each incoming packet the
following look-up scheme is triggered: hash key generation from TCP/IP header,
table access ①, cache access ② and after a cache, miss main memory access plus
data copy ③ ④ – as visualized in Fig. 2.

hash key hash key

new

link

main memory

link buffer

C cached flows
[S bytes per entry]

T
2C

1

2

4

3

link last

copy

Fig. 2. TCP/IP Flow Context Look-up Scheme. Most contexts are stored in the ex-
ternal main memory. In addition, C contexts are cached in the link buffer.

We used a CRC-32 as the hash function and then reduced the number of bits
to the required values, �log2(2×C)� and �log2 T � respectively. Once the hash key
is generated, it can be checked whether the respective connection context entry
can be found along the hash bucket list in the cache queue. If the connection
context does not exist in the queue, the look-up scheme continues using the
second hash table of different size that points to elements in the main memory.
Finally, the connection context data is transferred and stored automatically in
the cache queue.

A stack was used in order to manage physical memory locations for the con-
nection context data within the main memory. Each slot is associated with one
connection context of size S and its start address pointer leading to the memory
location. The obvious advantage of this approach is that the memory slots can
be stored from arbitrary positions in the memory. The hash table itself and even
the stack can also be managed and stored in the link buffer. It is worth point-
ing out that automatic garbage collection on the traffic flow data is essential.
Garbage collection is beyond the scope of this paper, because it has no direct
impact on the performance of the TCP/IP flow data look-up.
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4 Evaluation

The effectiveness of a cache is usually measured with the hit rate. A high hit
rate indicates that the cache parameters fit well to the considered application.
In our case the actual number of buffer and memory accesses were supposed to
be the determining factor for the performance, since these directly correspond
to the latency. We used a simple cost function based on two counters in order
to measure average values for the latency. As summing up the counters’ score
with different weights, two different delay times were taken into account, i.e.
one for on-chip SRAM and the other for external main memory. Without loss of
generality, we assumed that the external memory was 20 times slower.

4.1 Traffic Flow Modeling

Based on available traces such as [11–13] and traces from our servers, we modeled
incoming packets in a server node. We assumed that the combinations of IP
addresses and ports preserve a realistic traffic behavior for TCP/IP scenarios.
In Table 1, all trace files used through the simulations are summarized by giving
a short description, the total number of packets P/106 and the average number
of packets per flow Pav. Furthermore, Pmed is the respective median value. Fig. 3
shows the relative numbers of packets belonging to a specific flow in percent.

Table 1. Listing of the IP Network Trace Files

Trace Organization Link Date P/106 Pav Pmed

LUH University Hannover GigEth 2005/01/12 8.80 37 10
AMP AMPATH in Miami OC12 2005/03/15 10.9 53 4
PUR Purdue University GigEth 2006/08/04 14.0 38 3
COS Colorado State University OC3 2004/05/06 2.35 13 3
TER SDSC’s Cluster OC192 2004/02/08 3.25 1455 31

4.2 Sizing of the Main Hash Table and the Cache

On one hand, the table for addressing the connection contexts in the main mem-
ory has a significant impact on the performance of look-up scheme. It needs to
have a certain size in order to avoid collisions. On the other hand, saving mem-
ory resources also makes sense in most cases. Thus, it is the question of how to
distribute the buffer space the best way. In Eq. 1, the constant on the right side
refers to the available space, the size of the flow context is expressed by S, a is
another system parameter. This can be understood as an optimization problem
as different T -C-constellations are considered in order to minimize the latency.

a T + S × C = const (1)

For a test case, we assumed around 64K Byte of free SRAM space which could
be utilized for speeding up the look-up. 64K Byte should be a preferable amount
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Fig. 3. Relative Number of Packets per Flow in a Trace File. The x-axis shows the
number of different flows, ordered by the number of packets in the trace. On the y-
axis, the relative amount of packets belonging to the respective flows is plotted. Flows
with < 0.1% are neglected in the plot.
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Fig. 4. Normalized Latency Measure in % for a Combination of a Hash Table and a
Queue-based Cache in a 64K Byte buffer]

of on-chip memory. Moreover, we assumed that a hash entry required 4 Byte and
a cached connection context S = 88 Byte. Based on these values, we evaluated
different cache size configurations from C = 0 up to C ≈ 700. The remaining
space was used for the two hash tables as indicated in Fig. 2. Following Eq. 1,
the value of T now depends on the actual value of C or verse visa.

Fig. 4 shows the five simulation runs based on the trace files, which were in-
troduced in section 4.1. Each of the curves was normalized to run for C = 0.
It can be seen that for larger C the performance is very much dominated by
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Fig. 5. Speed-up Factor for Independent Table and Cache Sizing. Referring to the
performance of a table with T = 210, the possible speed-up that can be obtained with
other T is shown above. In the diagram below, the speed-up for using different cache
sizes C is sketched for a fixed T = 214.

the respective small size of the hash table. When the hash table size gets too
small, the search time is significantly increased by collisions. In case of the TER-
trace there is no need for a large cache. The main traffic is caused by very few
flows, whereas they are not interrupted by other flows. Regarding to a significant
speed-up of the look-up scheme for a broader range applications, the usage of a
connection cache with e.g. C = 128 seems to be well-suited. This example can
be extended with other constraints. Basically, the results are similar, showing an
optimum region for T and C. Only if much more on-chip memory can be used
for the scheme, such as a few Megabytes, the speed-up based on the a larger
number of hash table entries will more or less saturate and consequently, much
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more flows can be cached in the buffer. However, it is remarkable that less than
a Megabyte is excepted to be available.

Independent from a buffer space constraint it must be evaluated whether a
larger size for the connection cache or hash tables is worth its effort. In Fig. 5 (a)
configurations are shown, in which the cache size was set to C = 0, increasing
only the table size T . Fig. 5 (b) shows cases for fixed T and different cache sizes.
Again, the TER-trace must be treated differently, the reasons are the same
as above. However, knowing about the drawbacks of one or the other design
decision, the plots in Fig. 5 on page 9 emphasize the trade-offs.

5 Summary, Conclusion and Outlook

The goal of this paper was to improve the look-up procedure for TCP/IP flow
data in high-performance and future end systems. We showed a basic concept
of how to implement a connection cache with a local buffer, which is included
in specialized network processor architectures. Our analysis was based on sim-
ulation of network server trace data from the last years. Therefore, this work
provides a new look at a long existing problem.

We showed that a combination of a conventional hash table-based search and
a queue-based cache provides a remarkable performance gain, whilst a system
implementation effort is comparable low. We assumed that the buffer space was
limited. The distribution of the available buffer space can be understood as an
optimization problem. According to our analysis, a rule of the thumb would
prescribe to cache at least 128 flows if possible.

The hash table for searching flows outside of the cache should include at least
210 but preferably 214 root entries in order to avoid collisions. We measured hit
rates for the cache of more than 80% in average.

Initially, our concept was intended for a software implementation. Though it is
possible to accelerate some of the steps in the scheme with the help of dedicated
hardware, like the hash key calculation or even the whole cache infrastructure.
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Abstract. This paper focuses on the instruction fetch resources in a
real-time SMT processor to provide an energy-efficient configuration for
a soft real-time application running as a high priority thread as fast as
possible while still offering decent progress in low priority or non-real-
time thread(s). We propose a fetch mechanism, Fetch-around, where a
high priority thread accesses the L1 ICache, and low priority threads
directly access the L2. This allows both the high and low priority threads
to simultaneously fetch instructions, while preventing the low priority
threads from thrashing the high priority thread’s ICache data. Overall,
we show an energy-performance metric that is 13% better than the next
best policy when the high performance thread priority is 10x that of the
low performance thread.

Keywords: Caches, Embedded Processors, Energy Efficiency, Real-time,
SMT.

1 Introduction

Simultaneous multithreading (SMT) techniques have been proposed to increase
the utilization of core resources. The main goal is to provide multiple thread con-
texts from which the core can choose instructions to be executed. However, this
comes at the price of a single thread’s performance being degraded at the expense of
the collection of threads achieving a higher aggregate performance. Previous work
has focused on the techniques to provide each threadwith a fair allocation of shared
resources. Inparticular, the instruction fetchbandwidthhasbeen the focus ofmany
papers, and a round-robin policy with directed feedback from the processor [1] has
been shown to increase fetch bandwidth and overall SMT performance.

Soft real-time systems are systems which are not time-critical [2], meaning
that some form of quality is sacrificed if the real-time task misses its deadline.
Examples include real audio/video players, tele/video conferencing, etc. where
the sacrifice in quality may come in the form of a dropped frame or packet.
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An soft real-time SMT processor is asymmetric in nature that one thread is
given higher priority for the use of shared resources, which becomes the real-time
thread, and the rest of the threads in the system are low-priority threads. In this
case, implementing thread fetching with a round-robin policy is a poor decision.
This type of policy will degrade the performance of the high priority (HP) thread
by lengthening its execution time. Instinctively, a much better solution would
be to assign the full fetch bandwidth to the HP thread at every cycle, and the
low priority (LP) threads can only fetch when the HP thread stalls for data or
control dependency, as was done in as done in [3], [4] and [5]. This allows the
HP thread to fetch without any interruption by the LP threads. On the other
hand, this policy can adversely affect the performance of the LP threads as they
fetch and execute instructions less frequently. Thus, the contribution of the LP
threads to the overall system performance is minimal.

In addition to the resource conflict that occurs for the fetch bandwidth, L1
instruction cache space is also a critical shared resource. As threads execute
they compete for the same ICache space. This means that with the addition of
LP threads to a system, the HP thread may incur more ICache misses and a
lengthened execution time. One obvious solution to avoid the fetch bandwidth
and cache space problems would be to replicate the ICache for each thread, but
this is neither a cost effective nor power efficient solution. Making the ICache
multi-ported [6,7] allows each thread to fetch independently. However, multi-
ported caches are known to be very energy hungry and do not address the cache
thrashing that occurs. An alternative to multi-porting the ICache, would be to
partition the cache into several banks and allow the HP and LP threads to access
independent banks [8]. However, bank conflicts between the threads still needs
to be arbitrated and cache thrashing still occurs.

Ideally, a soft real-time SMT processor would perform the best if provided
a system where the HP and LP threads can fetch simultaneously and the LP
threads do not thrash the ICache space of the HP thread. In this case the HP
thread is not delayed by the LP thread, and the LP threads can retire more
instructions by fetching in parallel to the HP thread. In this paper, we propose
an energy-efficient SMT thread fetching mechanism that fetches instructions
from different levels of the memory hierarchy for different thread priorities. The
HP thread always fetches from the ICache and the LP thread(s) fetch directly
from the L2. This benefits the system in 3 main ways: a) The HP and LP threads
can fetch simultaneously, since they are accessing different levels of the hierarchy,
thus improving LP thread performance. b) The ICache is dedicated to the use
of the HP thread, avoiding cache thrashing from the LP thread, which keeps the
runtime low for the HP thread. c) The ICache size can be kept small since it
only needs to handle the HP thread. Thus reducing the access energy of the HP
thread providing an energy-efficient solution.

Ultimately, this leads to a system with an energyperformance that is 13% better
than the next best policy with the same cache sizes when the HP thread has 10x
the priorityof the LP thread. Alternatively, it achieves the sameperformance while
requiring only a quarter to half of the instruction cache space. The only additional
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hardware required to achieve this is a private bus between the fetch engine and the
L2 cache, and a second instruction address calculation unit.

The organization of the paper is as follows: Section 2 gives some background
on fetch mechanisms in multi-threaded processors. Section 3 explains the details
of how multiple thread instruction fetch can be performed from different cache
levels. Section 4 introduces the experimental framework and presents energy
and performance results. Finally, Section 5 concludes the paper.

2 Related Work

Static cache partitioning allocates the cache ways among the threads so that
each thread can access its partition. This may not be an efficient technique for
L1 caches in which the set associativity is 2 or 4 way. The real-time thread can
suffer performance losses even though the majority of the cache ways is allocated
to it. Also, the dynamic partitioning [9] allocates cache lines to threads accord-
ing to its priority and dynamic behaviour. Their efficiency comes at a hardware
complexity as the performance of each thread is tracked using monitoring coun-
ters and decision logic, which increases the hardware complexity and may not
be affordable for cost-sensitive embedded processors.

There have been fetch policies proposed for generic SMT processors that dy-
namically allocate the fetch bandwidth to the threads so as to efficiently utilize
the instruction issue queues [10,11]. However, these fetch policies do not address
the problem in the context of attaining a minimally-delayed real-time thread in
a real-time SMT processor.

There also have been some prior investigations on soft and hard real-time SMT
processors. For instance, the HP and LP thread model is explored in [3] in the con-
text of prioritizing the fetchbandwidth among threads. Their proposed fetchpolicy
is that the HP thread has priority for fetching first over the LP threads, and the LP
threads canonly fetchwhen theHP thread stalls. Similarly, [4] investigates resource
allocation policies to keep the performance of the HP thread as high as possible
while performing LP tasks along with the HP thread. [12] discusses a technique to
improve the performance by keeping its IPC of HP thread in an SMT processor un-
der OS control. A similar approach is taken by [13] in which the IPC is controlled to
guarantee the real-time threaddeadlines in anSMTprocessor. [14] investigates effi-
cientwaysof co-scheduling threads intoa soft real-timeSMTprocessor. Finally, [15]
presents a virtualized SMT processor for hard real-time tasks, which uses scratch-
pad memories rather than caches for deterministic behavior.

3 Simultaneous Thread Instruction Fetch Via Different
Cache Levels

3.1 Real-Time SMT Model

Although the proposed mechanism is valid for any real-time SMT processor
supporting one HP thread and many other LP threads, we will focus on a dual-
thread real-time SMT processor core supporting one HP and one LP thread.
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Figure 1a shows the traditional instruction fetch mechanism in a multi-threaded
processor. Only one thread can perform an instruction fetch at a time. In a
real-time SMT processor, this is prioritized in a way that the HP thread has
the priority to perform the instruction fetch over the LP thread. The LP thread
performs instruction fetch only when the HP thread stalls. This technique will
be called HPFirst, and is the baseline for all comparisons that are performed.

3.2 Fetch-Around Mechanism

We propose an energy-efficient multiple thread instruction fetching mechanism
for a real-time SMT processor as shown in Figure 1b. The HP thread always
fetches from the ICache and the LP thread directly fetches from the L2 cache.
This is called the Fetch-around instruction fetch mechanism because the LP
thread fetches directly from L2 cache passing around the instruction cache. When
the L2 instruction fetch for LP thread is performed, the fetched cache line does
not have to be allocated into the ICache and it is brought through a separate
bus that connects the L2 to the core and is directly written into the LP thread
Fetch Queue in the core.

Fetch Engine

Icache

L2

1-cycle fetch on hit

Linefill

HP or LP
request

miss
request

LP
request

m-cycle LP

direct fetch

(a) (b)

MEMORY

LP Fetch Q HP Fetch Q

Fetch Engine

Icache

L2

HP Linefill

MEMORY

LP Fetch Q HP Fetch Q

HP I$
miss request

1-cycle HP fetch on hitHP
request

Fig. 1. Traditional instruction fetch in a multi-threaded processor (a), simultaneous
thread instruction fetch at different cache levels in a soft real-time SMT processor (b)

This mechanism is quite advantageous because the LP thread is a background
thread and an m-cycle direct L2 fetch can be tolerated as the HP thread is
operating from the ICache. This way, the whole bandwidth of the ICache can be
dedicated to the HP thread. This is very beneficial for the performance of the
HP thread as the LP thread(s) instructions do not interfere with the HP thread,
and therefore no thrashing of HP thread instructions occurs.

The Fetch-around policy may also consume less energy than other fetch poli-
cies. Although accessing the L2 consumes more energy than the L1 due to look-
ing up additional cache ways and larger line sizes, the Fetch-around policy only
needs to read a subset of the cache line (i.e. instruction fetch width) on a L2
I-side read operation from a LP thread. Another crucial factor for cache energy
reduction is that the LP thread does not use the ICache at all, and therefore
does not thrash the HP thread in the ICache. This will reduce the traffic of the
HP thread to the L2 cache, and provide a higher hit rate in the more energy
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efficient ICache. Furthermore, the energy consumed by allocating L2 cache lines
into the ICache is totally eliminated for the LP thread(s). Since the number of
HP thread instructions is significantly larger than the LP, the energy savings of
the HP thread in the ICache outweighs that of the LP threads increase in L2
energy.

In addition to its low energy consumption capability, the Fetch-around policy
has the advantage of not requiring a large ICache for an increased number of
threads. Since the ICache is only used by the HP thread, additional threads in
the system put no more demands on the cache, and the performance remains
the same as single threaded version. It is possible that a fetch policy such as
round-robin may need twice the size of the ICache to achieve the same HP
thread performance level as the Fetch-around policy in order to counteract the
thrashing effect. Thus, the Fetch-around policy is likely to reduce the ICache
size requirements, and therefore the static and dynamic ICache energy.

It takes approximately m-cycles (i.e. the L2 access time) to bring the LP
thread instructions to the core from L2. This effectively means that the LP
thread is fetched at every m cycles. One concern is the cost of the direct path
between the L2 and ICache. This path does not have to be an L2 cache line size
in width since the bus connects directly to the core and only need deliver the
fetch width (2 instructions).

4 Energy and Performance Results

4.1 Experimental Framework

We have performed a cycle-accurate simulation of an SMT implementation of
an ARMv7 architecture-compliant processor using the EEMBC benchmark suite
[16]. We have used 24 benchmarks from the EEMBC benchmark suite covering a
wide range of embedded applications including consumer, automotive, telecom-
munications and DSP. We run all possible dual-thread permutations of these
benchmarks (i.e. 576 runs). A dual-thread simulation run completes when the
HP thread finishes its execution, and then we collect statistics such as total
IPC, degree of LP thread progress, HP thread speedup and etc. We present the
average of these statistics over all runs in the figures.

The simulated processor model is a dual-issue in-order superscalar dual-thread
SMT processor core with 4-way 1KB Icache, 4-way 8KB Dcache, and 8-way
16KB L2 cache. The hit latency is 1 cycle for L1 caches and 8 cycles for the
L2 cache, the memory latency is 60 cycles and the cache line size is 64B for
all caches. There is a 4096-entry global branch predictor with a shared branch
history buffer and a replicated global branch history register for each thread, 2-
way set associative 512-entry branch target buffer, and 8-entry replicated return
address stack for each thread. The ICache delivers 2 32-bit instructions to the
core per instruction fetch request. We used two thread fetch select policies: Fetch-
around and HPFirst. HPFirst is the baseline fetch policy in which only one
thread can fetch at a time, and the priority is always given to the HP thread first.
There are two decoders in the decode stage that can decode up to instructions,
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and the HP thread has the priority over the LP thread to use the two decoders. If
the HP thread instruction fetch queue is empty, then the LP thread instructions,
if any, are decoded. Similarly, the HP thread has the priority to use the two issue
slots. If it can issue only 1 instruction or cannot issue at all, then the LP thread
is able to issue 1 or 2 instructions.

Most of the EEMBC benchmarks can fit into 2-to-8KB instruction cache.
Thus, we deliberately select a very small instruction cache size (i.e. 1KB) to
measure the effect of instruction cache stress. The L2 line size is 512 bits and
the L1 instruction fetch width is 64 bits. From L2 to L1 ICache, a line size of 512
bits (i.e. 8 64 bits) are allocated on an ICache miss. ICache contains 4 banks or
ways, and each bank consists of 2 sub-banks of 64 bits, so 8 sub-banks of 64 bits
comprise a line of 512 bits. When an ICache linefill is performed, all sub-banks
tag and data banks are written. We model both ICache and L2 cache as serial
access caches meaning that the selected data bank is sense-amplified only after
a tag match.

4.2 Thread Performance

We have measured 2 metrics to compare these fetch policies:

1. Slowdown in terms of execution time of the highest priority thread relative
to itself running on the single-threaded processor,

2. Slowdown in terms of CPI of the lowest priority thread. As the HP thread
has the priority to use all processor resources,

Sharing resources with other LP threads lengthens the HP thread execution
time, and therefore we need to measure how the HP thread execution time in
the SMT mode compares against its single-threaded run. In the single-threaded
run, the execution time of the HP thread running alone is measured. Ideally, we
would like not to degrade the performance of the HP thread but at the same time
we would like to improve the performance of the LP thread. Thus, we measure
the slowdown in LP thread CPI under SMT for each configuration with respect
to their single-threaded CPI. The CPI of the LP thread is measured when it
runs alone.

Table 1 shows the percentage slowdown in HP thread execution time relative
to its single-threaded execution time. Although the ICache is not shared among
threads in Fetch-around, the slowdown in the HP thread by about 10% occurs
due to inter-thread interferences in data cache, L2 cache, branch prediction tables
and execution units. On the other hand, the HP thread slowdown is about 13%
in HPFirst. Since Fetch-around is the only fetch policy that does not allow the
LP thread to use the ICache, the HP thread has the freedom to use the entire
ICache and does not encounter any inter-thread interference.

Table 1 also shows the progress of the LP thread under the shadow of the HP
thread measured in CPI. The progress of the LP thread is the slowest in Fetch-
around as expected because the LP thread fetches instructions from L2, which
is 8-cycles away from the core. HPFirst has better LP thread performance as LP
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Table 1. Percentage slowdown in HP thread, and the progress of the LP thread

Single-thread HPFirst Fetch-around
Percentage slowdown in HP N/A 12.7% 9.5%

The LP CPI 1.6 3.8 5.1

thread instructions are being fetched from the ICache in a single cycle access.
However, this benefit comes at the price of evicting HP thread instructions from
the ICache due to interthread interference and increasing the HP thread runtime.

4.3 Area Efficiency of the Fetch-Around Policy

We take a further step by increasing the ICache size from 1KB to 2KB and
4KB for HPFirst and compare its performance to Fetch-around using only a
1KB instruction cache. Table 2 shows that Fetch-around using only a 1KB in-
struction cache still outperforms the other policies having 2 and 4KB ICache
sizes. In addition to Fetch-around and HPFirst fetch policies, we also include
the round-robin (RR) fetch policy for illustration purposes where the threads are
fetched in a round-robin fashion even though it may not be an appropriate fetch
technique for a real-time SMT processor. Although some improvement in HP
thread slowdown (i.e. drop in percentage) is observed in these 2 policies when
the ICache size is doubled from 1KB to 2KB, and quadrupled to 4KB, it is still
far from being close to 9.5% in Fetch-around using 1KB ICache. Thus, these
policies suffer a considerable amount of inter-thread interference in the ICache
even when the ICache size is quadrupled. Table 3 supports this argument by
showing the HP thread instruction cache hit rates. As the ICache is only used
by the HP thread in Fetch-around, its hit rate is exactly the same as the hit rate
of the single-thread model running only the HP thread. On the other hand, the
hit rates in HPFirst and RR are lower than Fetch-around because both policies
observe the LP thread interfering and evicting the HP thread cache lines. These
results suggest that Fetch-around is much more area-efficient than the other
fetch policies.

Table 2. Comparing the HP thread slowdown of Fetch-around using only 1KB in-
struction cache to HPFirst and RR policies using 2KB and 4KB instruction caches

Fetch-around 1K HPFirst 2K HPFirst 4K RR 2K RR 4K
9.5% 12.3% 11.7% 17.7% 17.2%

Table 3. HP Thread ICache hit rates

HPFirst Fetch-around RR
98.6% 97.6% 95.4%
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4.4 Iside Dynamic Cache Energy Consumption

For each fetch policy, the dynamic energy spent in the Iside of the L1 and L2
caches is calculated during instruction fetch activities. We call this Iside dynamic
cache energy. We measure the Iside dynamic cache energy increase in each fetch
policy relative to the Iside dynamic energy consumed when the HP thread runs
alone. We use Artisan 90nm SRAM [17] library to model tag and data RAM
read and write energies for L1I and L2 caches.

Table 4. Percentage of Iside cache energy increase with respect to the HP thread
running in single-threaded mode for 1KB instruction cache

HPFirst Fetch-around RR
75.2% 47% 75%

Table 4 shows the percentage energy increase in the Iside dynamic cache en-
ergy relative to the energy consumed when the HP thread runs alone. Although
accessing the L2 consumes more power than the L1 due to looking up more
ways and reading a wider data width (i.e. 512 bits), Fetch-around consumes less
L2 energy than normal L2 I-side read operations by reading only 64-bits (i.e.
instruction fetch width) for the LP threads. Fetch-around also reduces the L2
energy to some degree as the LP thread does not thrash the HP thread in the
ICache, reducing the HP thread miss rate compared to HPFirst. This smaller
miss rate translates to less L2 accesses from the HP thread, and a reduction in
L2 energy. Besides, Fetch-around also eliminates ICache tag comparisons and
dataRAM read energy for the LP thread. And further saves ICache line alloca-
tion energy by bypassing the ICache allocation for the LP thread. Fetch-around
consumes the least amount of energy among all fetch policies at the expense of
executing fewer LP thread instructions. This fact can be observed more clearly
if the individual energy consumption per instruction of each thread is presented.

Table 5. Energy per Instruction (uJ)

uJ/Inst HPFirst Fetch-around RR
HP Thread 34.3 28.8 34.3

LP Thread 55.3 72.6 47.8

Table 5 presents the energy consumption per HP and LP threads separately.
Fetch-around consumes the least amount of energy per HP thread instruction
even though the execution of an LP thread instruction is the most energy-hungry
among all fetch policies. As the number of HP thread instructions dominate the
number of LP thread instructions, having very low energy-per-HP-instruction
causes the Fetch-around policy to obtain the lowest overall Iside cache en-
ergy consumption levels. HPFirst and RR have about the same energy-per-HP-
instruction while RR has lower energy-per-LP-instruction than HPFirst. RR
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retires more LP thread instructions than HPFirst, and this behavior (i.e. RR
retiring a high number of low-energy LP thread instructions and HPFirst retir-
ing a low number of high-energy LP thread instructions) brings the total Iside
cache energy consumption of both fetch policies to the same level.

4.5 Energy Efficiency of the Fetch-Around Policy

The best fetch policy can be determined as the one that gives higher performance
(i.e. low HP thread slowdown and low LP thread CPI) and lower Iside cache en-
ergy consumption, and should minimize the product of the thread performance
and Iside cache energy consumption overheads. The thread performance over-
head is calculated as the weighted mean of the normalized HP Execution Time
and LP Thread CPI as these two metrics contribute at different importance
weights or degrees of importance into the overall performance of the real-time
SMT processor. Thus, we introduce two new qualitative parameters called HP
thread degree of importance and LP thread degree of importance, which can take
any real number. When these two weights are equal, this means that the per-
formance of both threads is equally important. If the HP thread degree of im-
portance is higher than the LP thread degree of importance, the LP thread
performance is sacrificed in favor of attaining higher HP thread performance.
For a real-time SMT system, the HP thread degree of importance should be
much greater than the LP thread degree of importance. HP Execution Time,
LP Thread CPI, and Iside Cache Energy are normalized by dividing each term
obtained in SMT mode by the equivalent statistic obtained when the relevant
thread runs alone. The Iside Cache Energy is normalized to the Iside cache energy
consumption value when the HP thread runs alone. These normalized values are
always greater than 1 and represent performance and energy overhead relative
to the single-thread version.
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Fig. 2. Comparison of the energy-performance overhead products

Figure 2 presents the energy-performance overhead products for all fetch poli-
cies using 1KB instruction cache. The x-axis represents the ratio of the HP thread
degree of importance to the LP thread degree of importance. In addition to this,
the figure shows the overhead product values for HPFirst and RR policies us-
ing 2KB and 4KB instruction caches. When the ratio is 1, both threads are
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equally important, and there is no real advantage of using Fetch-around as it
has the highest energy-performance overhead product. When the ratio becomes
about 3, Fetch-around has lower overhead product than the other two policies
using the same size ICache. In fact, it is even slightly better than HPFirst us-
ing 2KB ICache. When the ratio is 5 and above, not only Fetch-around is more
energy-efficient than HPFirst and RR using the same ICache size but also better
than HPFirst and RR using 2KB and 4KB ICaches. When it becomes 10, Fetch-
around is 13% and 15% more efficient than HPFirst and RR for the same ICache
size. When the ratio ramps up towards 100, the energy-efficiency of Fetch-around
increases significantly. For instance, it becomes from 10% to 21% more efficient
that the other two policies with equal and larger ICaches when the ratio is 100.

5 Conclusion

We propose a new SMT thread fetching policy to be used in the context of sys-
tems that have priorities associated with threads, i.e. soft real-time applications
like real audio/video and tele/video conferencing. The proposed solution, Fetch-
around, has high priority threads access the ICache while requiring low priority
threads to directly access the L2 cache. This prevents the low priority threads
from thrashing the ICache and degrading the performance of the high priority
thread. It also allows the threads to simultaneously fetch instructions, improving
the aggregate performance of the system. When considering the energy perfor-
mance of the system, the Fetch-around policy does 13% better than the next
best policy with the same cache sizes when the priority of the high performance
thread is 10x that of the low priority thread. Alternatively, it achieves the same
performance while requiring only a quarter to half of the instruction cache space.
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Abstract. Software bypassing is a technique that allows programmer-
controlled direct transfer of results of computations to the operands of
data dependent operations, possibly removing the need to store some val-
ues in general purpose registers, while reducing the number of reads from
the register file. Software bypassing also improves instruction level paral-
lelism by reducing the number of false dependencies between operations
caused by the reuse of registers. In this work we show how software by-
passing affects cycle count and reduces register file reads and writes. We
analyze previous register file bypassing methods and compare them with
our improved software bypassing implementation. In addition, we pro-
pose heuristics when not to apply software bypassing to retain scheduling
freedom when selecting function units for operations. The results show
that we get at best 27% improvement to cycle count, as well as up to 48%
less register reads and 45% less register writes with the use of bypassing.

1 Introduction

Instruction level parallelism (ILP) requires large numbers of function units (FU)
and registers, which increases the size of the bypassing network used by the proces-
sor hardware to shortcut values from producer operations to consumer operations,
producing architectures with high energy demands. While increase in explorable
ILP allows to retain performance on lower clock speed, energy efficiency can also
be improved by limiting the number of registers and register file (RF) reads and
writes [1]. Therefore, approaches aiming to reduce register pressure and RF traffic
by bypassing the RF and transporting results of computation from one operation
to another directly provide cost savings in RF read. Some results may not need
to be written to registers at all, resulting in additional savings. Allowing values to
stay in FUs reduces further the need to access a general purpose RF, while keep-
ing FUs occupied as a storage for values, thus introducing a tradeoff between the
number of registers needed and number of FUs.

Programs often reuse GPRs for storing different variables. This leads to eco-
nomical utilization of registers, but it also introduces artificial serialization con-
straints, so called “false dependencies”. Some of these dependencies can be
avoided in case all uses of a variable can be bypassed. Such a variable does
not need to be stored in a GPR at all, thus avoiding false dependencies with
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other variables sharing the same GPR. In this paper we present several improve-
ments to the earlier RF bypassing implementations. The main improvements are
listed below.

– In our work we attempt to bypass also variables with several uses in different
cycles, even if not all the uses could be successfully bypassed.

– We allow variables to stay in FU result registers longer, and thus allow
bypassing at later cycles, or early transports into operand register before
other operands of same operation are ready. This increases the scheduling
freedom of the compiler and allows for further decrease in RF traffic.

– We use a parameter we call “the look back distance” to control the ag-
gressiveness of the software bypassing algorithm. The parameter defines the
maximum distance between the producer of a value and the consumer in the
scheduled code that is considered for bypassing.

2 Related Work

Effective use of RF bypassing is dependent on the architecture’s division of work
between the software and the hardware. In order to bypass the RF, the compiler
or hardware logic must be able to determine what are the consumers of the
bypassed value, effectively requiring data flow information, and how the direct
operand transfer can be performed in hardware.

While hardware implementations of RF bypassing may be transparent to pro-
grammer, they also require additional logic and wiring in the processor and can
only analyze a limited instruction window for the required data flow informa-
tion. Hardware implementations of bypassing cannot get the benefit of reduced
register pressure since the registers are already allocated to the variables when
the program is executing. However, the benefits from reduced number of RF ac-
cesses are achieved. Register renaming [2] also produces the increase in available
ILP from removal of false dependencies. Dynamic Strands presented in [3] are
an example of an alternative hardware implementation of RF bypassing. Strands
are dynamically detected atomic units of execution where registers can be re-
placed by direct data transports between operations. In EDGE architectures [4],
operations are statically assigned to execution units, but they are scheduled dy-
namically in dataflow fashion. Instructions are organized in blocks, and each
block specifies its register and memory inputs and outputs. Execution units are
arranged in a matrix, and each unit in the matrix is assigned a sequence of op-
erations from the block to be executed. Each operation is annotated with the
address of the execution unit to which the result should be sent. Intermediate
results are thus transported directly to their destinations.

Static Strands in [5] follows earlier work [3] to decrease hardware costs. Strands
are found statically during compilation, and annotated to pass the information
to hardware. As a result, the number of required registers is reduced already
in compile time. This method was however applied only to transient operands
with a single definition and single use, effectively up to 72% of dynamic integer
operands, bypassing about half of them [5]. Dataflow Mini-Graphs [6] are treated
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Fig. 1. Example of TTA concept

add r3,r1,r2
add r5,r4,r3
mul r1,r3,r5

(a)

r2 -> add.t; r1 -> add.o;
add.r -> r3; r4 -> add.o;
r3 -> mul.o; r3 -> add.t;
add.r -> r5; ...;
...; r5 -> mul.t;
mul.r -> r1; ...;
(b) Without bypassing (.o and
.t denoting inputs and .r result)

r2 -> add.t; r1 -> add.o;
add.r -> mul.o; r4 -> add.o;
add.r -> add.t; ...;
...; add.r -> mul.t;
mul.r -> r1; ...;
(c) Register r3 bypassed twice and

r5 once

Fig. 2. Example of schedule for two add and one mul operations for Risc like architec-
ture (a) and TTA architecture (b)(c) from Fig. 1

as atomic units by a processor. They have the interface of a single instruction,
with intermediate variables alive only in the bypass network.

Architecturally visible “virtual registers” are used to reduce register pressure
through bypassing in [7]. In this method, a virtual register is only a tag marking
a data dependence between operations without having physical storage location
in the RF. Software implementations of bypassing analyze code during com-
pile time and pass to the processor the exact information about the sources
and the destinations of bypassed data transports, thus avoiding any additional
bypassing and analyzing logic in the hardware. This requires an architecture
with an exposed bypass network that allows such direct programming, like the
Transport Triggered Architectures (TTA) [8], Synchronous Transfer Architecture
(STA) [9] or FlexCore [10]. The assignment of destination addresses in an EDGE
architecture corresponds to software bypassing in a transport triggered setting.
Software only bypassing was previously implemented for TTA architecture using
the experimental MOVE framework [11] [12]. TTAs are a special type of VLIW
architectures as shown on Fig. 1. They allow programs to define explicitly the
operations executed in each FU, as well as to define how (with position in in-
struction defining bus) and when data is transferred (moved) to each particular
port of each unit, as shown on Fig. 2(b)(c). A commercial application of the
paradigm is the Maxim MAXQ general purpose microcontroller family [13].
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4 -> add.o

add.r -> R2

O

R1 -> add.trigger

O

mul.r -> R1

WAR

20 -> mul.o

O

R3 -> mul.trigger

O

R1 -> add.o

RAW

add.r -> R4

O

4 -> add.trigger

O

(a)

4 -> add.o

add.r -> R2

O

R1 -> add.trigger

O

20 -> mul.o

mul.r -> add.o

O

R3 -> mul.trigger

O

add.r -> R4

O

4 -> add.trigger

O

(b)

Fig. 3. DDG: a) without bypassing b) with bypassing and dead result move elimination

With the option of having registers in input and output ports of FUs, TTA
allows the scheduler to move operands to FUs in different cycles and reading
results several cycles after they are computed. Therefore the limiting factor for
bypassing is the availability of connections between source FU and destination
FUs. The MOVE compiler did not actively software bypass, but performed it
only if the “opportunity arose”.

3 Software Bypassing

Instruction level parallelism (ILP) is a measure of how many operations in a
program can be performed simultaneously. Architectural factors that prevent
achieving the maximum ILP available in a program include the number of buses,
the number of FUs, as well as the size of and the number of read and write ports
in RFs. Software bypassing helps to avoid some of these factors. Figure 3(a)
shows a fragment of a Data Dependence Graph (DDG). In the example, R1 is
used as an operand of the first add, and also as a store for the result of the mul,
subsequently read as an operand of the second add (”read after write” depen-
dence, RAW ). This reuse of R1 creates a ”write after read” dependence between
read and write of R1, labeled WAR. When the result of the mul operation is
bypassed directly into the add operation, as shown in Fig. 3(b), the WAR depen-
dence induced by the shared register R1 disappears. Since the DDG fragments
are now independent of each other, the scheduler has more freedom in scheduling
them. Careless use of software bypassing by the instruction scheduling algorithm
can also decrease performance. One of the limiting factors of ILP is the num-
ber of available FUs to perform the operations in parallel. Using the input and
result registers of an FU as temporary storage renders the unit unavailable for
other operations. We have identified a parameter, look back distance, for con-
trolling the tradeoff. The parameter defines the distance between a move that
writes a value into the RF, and a subsequent move that reads an operand from
the same register. The larger the distance, the larger number of register accesses
can be omitted. However, the FUs will be occupied for longer, which may increase
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1: function ScheduleOperation(inputs, outputs, lookBack)
2: success := false
3: cycle := 0
4: while not success do
5: ScheduleASAP(cycle, inputs)
6: TryBypassOperands(lookBack, inputs)
7: success := ScheduleASAP(cycle, outputs)
8: if success then
9: RemoveDeadResults(inputs)

10: else
11: Unschedule(inputs)
12: Unschedule(outputs)
13: cycle := cycle + 1
14: end if
15: end while
16: end function

Fig. 4. Schedule and bypass an operation

the cycle count. Conversely, smaller distance leads to smaller number of register
reads and writes removed, but more efficient use of FUs.

Multiported RFs are expensive, so architects try to keep the number of reg-
ister ports low. However, this can limit the achievable ILP, as register accesses
may need to be spread over several cycles. Software bypassing reduces RF port
requirements in two ways. A write into a RF can be completely omitted, if all
the uses of the value can be bypassed to the consumer FUs (dead result move
elimination [14]).

Reducing the number of times the result value of a FU is read from a register
also reduces pressure on register ports. With less simultaneous RF reads there is
need for less read ports. This reduction applies even when dead result move elimi-
nation cannot be applied because of uses of value still later in code. The additional
scheduling freedom gained by eliminating false dependencies also contributes to
reduction of required RF ports. The data transports which still require register
reads or writes have less restrictions and could be scheduled earlier or later, thus
reducing the bottleneck of limited RF ports available in single cycle.

Our instruction scheduler uses operation-based top-down list scheduling on
a data dependence graph, where an operation becomes available for scheduling
once all producers of its operands have been scheduled [15]. Figure 4 outlines the
algorithm to schedule operands and results of a single operation. Once all the
operands are ready, all input moves of operation are scheduled (Fig. 4, line 5).
Afterwards, bypassing is attempted for each of the input operands that reads
register, guided by the look back distance parameter (line 6). After all the input
moves have been scheduled, the result moves of operation are scheduled (line 7).
After an operation has been successfully scheduled, the algorithm removes writes
into register that will not be read (line 9). If scheduling of result moves fails,
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1: function TryBypassOperands(inputs, lookBack)
2: for each candidate in inputs do
3: if candidate reads constant then
4: continue
5: end if
6: producer = producer of value read by candidate
7: limitCycle = producer.cycle + lookBack
8: if limitCycle < candidate.cycle then
9: continue � Producer move too far away

10: end if
11: Unschedule(candidate)
12: mergedMove := Merge(producer, candidate)
13: success := ScheduleASAP(mergedMove)
14: if not success then
15: Restore producer and consumer
16: end if
17: end for
18: return true
19: end function

Fig. 5. Software bypassing algorithm

possibly due to writer after read or write after write dependency on other already
scheduled moves, all of the scheduled moves of operation are unscheduled and
scheduling restarts with higher starting cycle (lines 11 to 13).

Figure 5 shows the outline of our bypassing algorithm. When considering
bypassing of register, algorithm computes the distance between the producers
result write into the RF and the read of a register, scheduled previously (Fig. 4,
line 5). If this distance is larger than specified (Fig. 5, line 8), bypassing is not
performed. Otherwise, the candidate moves is unscheduled and a new move is
created with the producer’s FU result port as the source and consumer’s FU
operand port as the destination. Such a merged move is then scheduled to as
early as possible cycle with respect to data dependencies and restrictions of the
resources induced by the already scheduled code. If scheduling fails, the original
producer and the costumer are restored and algorithm continues with the next
input operand. Figure 2 shows scheduled code without bypassing(b) and with
bypassing(c).

4 Experimental Setup

In order to implement a purely software solution to RF bypassing, we based
our experimental setup on the TTA architecture template. For comparing the
effect of software bypassing on the number of RF reads, writes, and on ILP, we
varied the look back distance used by the algorithm. We explored the effective-
ness of software bypassing with limited RF port resources by defining two TTA
processors with different RF resources, as described in Table 1(a). The machine
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Table 1. Resources of architectures (a) and benchmark applications (b) used in our
experimental setup

(a)

Machine name “big” “small” “wide”

Registers in RF 128 128 128

RF read ports 10 5 5

RF write ports 5 1 1

Count of FUs 7 (11) 7 (11) 14 (22)
�

of FUs inputs 14 (27) 14 (27) 28 (54)
�

of FUs results 7 (12) 7 (12) 14 (24)

Count of buses 10 10 10

(b)

adpcm ADPCM routine test

fft In-place radix-4 DIT FFT

jpeg JPEG decoding

mpeg4 Mpeg4 decoding (192x192)

Tremor Ogg Vorbis decoding (40KB)

Table 2. Number of dynamic register reads and writes and ratio reads/writes (r/w)
for small machine: a) without bypassing, b) with best bypassing

(a)

reads writes r/w

adpcm 203053 172103 1.17

fft 84493 37143 2.27

jpeg 11401300 7628810 1.49

mpeg4 311915000 190901000 1.63

Tremor 301137000 207185000 1.45

(b)

reads writes r/w

adpcm 122266 114219 1.07

fft 62728 27927 2.24

jpeg 5877870 4182930 1.40

mpeg4 175806000 125165000 1.40

Tremor 180258000 129774000 1.38

we refer to as “big” allowed us to see to what extent a large enough number of
ports in the RF defeats the benefits of software bypassing. The machine named
“small” is identical to “big” except for the much reduced number of ports in
the RF. This machine should show how much the proposed software bypassing
algorithm is able to reduce the need for additional RF ports while maintaining
the performance. We also explored the effect of software bypassing with differ-
ent number of FUs. The machine referred to as “wide” has identical number of
registers and RF read and write ports as “small”, but double the number of FUs
as in the “small” machine. This allowed us to investigate tradeoffs in storing
results longer in FUs by varying look back distance values. The benchmarks are
listed in Table 1(b).

5 Results

Figure 6(a) shows the comparison for a small machine with look back distances
of one to fifteen, against a schedule without software bypassing. The results
show that for most of the benchmarks, the performance for different look back
distances varies, with a general tendency for better results with smaller look
back distance. Improvements in the cycle count for the best look back distance
ranges from 27% to 16%.
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(c) Register file writes
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Fig. 6. Relative comparison: (a), (b), (c) small machine with different look back
distances and (d) small, big and wide machines vs. small machine without bypass-
ing (100%)

Figures 6(b) and 6(c) compare RF reads and writes for a small machine with
look back distances 1–15, against a schedule without bypassing, with the jpeg
benchmark having the highest decrease in RF reads of 48%, and RF writes of
45%, and fft having a smallest decrease of 25% for reads and writes. The best
performing look back distance in terms of cycle count does not correspond with
best results in decrease of the number of RF reads and writes. This supports
our claim from Section 3, that too aggressive use of bypassing may lead to FUs
being occupied for too long time, forcing the scheduler to delay other operations
on the same FU, while on the other hand, saving more of the register reads and
possibly writes.

Table 2(a) shows the ratio between register reads and writes without by-
passing, ranging from 1.17 to 2.27. Table 2(b) shows the same ratio with best
bypassing for reducing register accesses, ranging from 1.07 to 2.24. This de-
crease indicates that more register reads than writes were bypassed, thus not
only transient variables were bypassed, but also variables with multiple reads.

Figure 6(d) takes the cycle counts of the small machine without software by-
passing, and compares them with the big machine without software bypassing,
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the wide machine without software bypassing, and with bypassing using the best
performing look back distance for the small machine for each of the benchmarks
(see Fig. 6(a)). The limited number of RF read and write ports in the small
machine causes an increase in cycle counts for the small machine without software
bypassing due to serialization of RF accesses. In addition, added FUs in the wide
machine allowed the compiler to exploit ILP better, also providing a better cycle
count than the small machine.

With software bypassing, however, the cycle counts on the small machine are
in most cases smaller than on the big machine and the wide machine, with jpeg
having the highest decrease of 24% compared to the big machine. The loop-
oriented fft benchmark is an exception. This is due to the current bypassing
algorithm being unable to handle variable uses crossing loop boundaries. There-
fore, the RF bottleneck could be avoided poorly in this case due to the need to
fill the FUs at the beginning of the loop and read the results to GPRs at the
end of the loop. However, the presented software bypassing algorithm decreased
cycle count for fft by 16%, narrowing the gap between the big and the small
machines from 48%, without bypassing, to 32% with bypassing.

6 Conclusions

This work explored some of the benefits that software bypassing offers to improve
performance and reduce the cost of embedded applications implemented using
TTA processors. In particular, we explored the effect of the bypassing look back
distance on performance, and showed that using software bypassing, an archi-
tecture with a limited number of RF ports can outperform an architecture with
more RF ports or additional FUs without software bypassing. We also showed
that while small look back distance leads to higher savings in cycle counts, larger
distance leads to saving more register reads and writes.

In the future we plan to explore the possibilities of software bypassing in
global instruction scheduling and cyclic scheduling, bypassing whole subgraphs
of data dependence graph atomically. We predict that software bypassing is most
beneficial when done before or during register allocation, which will be verified
by experiments. In addition, we plan to evaluate the effect of reduced number
of RF reads and writes on energy savings.

This work was supported by the Academy of Finland, project 205743.
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Abstract. This paper describes a highly scalable architecture based on
field-programmable gate-array (FPGA) technology for prefix-preserving
anonymization of IP addresses at increasingly high network line rates.
The Crypto-PAn technique, with the Advanced Encryption Standard
(AES) as the underlying pseudo-random function, is fully mapped into
reconfigurable hardware. A 32 Gb/s fully-pipelined AES engine was de-
veloped and used to prototype the Crypto-PAn architecture. The proto-
type was implemented on a Xilinx Virtex-4 device achieving a worst-case
Ethernet throughput of 8 Gb/s using 141 block RAM’s and 4262 logic
cells. This is considerably faster than software implementations which
generally achieve much less than 100 Mb/s throughput. A technology-
independent analysis is presented to explore the scalability of the archi-
tecture to higher multi-gigabit line-rates.

1 Introduction

The availability of real-world Internet traffic traces is essential for network re-
search such as performance analysis, protocol development and traffic charac-
terization. The development or confirmation of most advances in this field are
only possible with the use of actual network data made available to the research
community. Unfortunately, network operators are often reluctant to make traces
publicly available because of privacy and legal concerns. In particular, informa-
tion about the sender and receiver present in the packet headers may reveal
confidential information about commercial organisations, or private information
about individuals. Furthermore, local, state or national laws may restrict net-
work monitoring and access to network records[1].

When network operators release traces to the public, several steps are usually
taken to increase compliance with the law and to minimize the risk of privacy
intrusions. The packets are usually truncated soon after the transport layer,
as the actual payload isn’t required in many cases, and can contain sensitive
or private information. Additionally, the IP addresses in the packet headers
are usually anonymized before the traces are released[2]. A simple approach is
to use a random one-to-one mapping, however this approach loses information
encoded in the prefixes. A common prefix of any two IP addresses is important
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Fig. 1. Network traffic monitoring system with Crypto-PAn anonymization module

in several areas of research, such as routing performance analysis or clustering
of end systems[3]. Thus the use of such schemes has been largely deprecated in
favour of prefix preserving schemes, such as Crypto-PAn[4].

Crypto-PAn provides a one-to-one mapping between the original IP address
and the anonymized IP address, while preserving the prefix. That is, if two origi-
nal IP addresses share a k-bit prefix, then their anonymized mappings also share
a k-bit prefix. Additionally, Crypto-PAn enables consistency to be maintained
across traces. The same original IP addresses in different traces are mapped
to the same anonymized IP address if the same secret key is used, and thus
distributed and parallel anonymization is possible. These properties have made
Crypto-PAn the most desirable scheme to use, however Crypto-PAn is compu-
tationally expensive due to the computation of one AES 128-bit block cipher for
every bit of the IP address.

Existing implementations of Crypto-PAn are software-based. The original im-
plementation of Crypto-PAn was able to process 10 Kp/s (thousands of packets
per second) on an 800 MHz Intel Pentium III[4], and an implementation included
with the libtrace[5] trace processing library obtains a throughput of 211 Kp/s
running on a AMD Opteron 250, with pre-computation of prefixes. Assuming
worst-case Ethernet conditions, the throughput falls short of 100 Mb/s line-rates,
which has a packet throughput of 312.5 Kp/s. Thus, software implementations
performing anonymization on-line must drop packets when throughput exceeds
capabilities, and off-line implementations pose a security or legal risk storing raw
traces for a period of time.

A hardware implementation of a prefix-preserving anonymization scheme has
been reported[6], however this scheme does not guarantee a one-to-one map-
ping between original IP addresses and the anonymized IP addresses. Some IP
addresses may overlap, however this scheme has the benefits of relatively low
computational requirements.

The aim of this paper is to provide a scalable hardware-based Crypto-PAn
architecture capable of anonymizing current and future network throughput’s at
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line-rate. The architecture is designed to be compatible with existing software
Crypto-PAn implementations, so that highly distributed network monitoring is
possible using a mix of hardware monitors for high-speed links, and software
monitors for low-speed links, while maintaining consistency across the entire
system.

The contributions of this paper are as follows:

– a hardware architecture is presented (Section 2);
– a technology independent model of the system is provided, so that perfor-

mance or area required can be predicted (Section 3);
– a 32 Gb/s fully pipelined AES core is presented (Section 4);
– a prototype of the architecture, using two 32 Gb/s AES engines is discussed

(Section 4);
– performance results are presented (Section 5).

2 Architecture

The Crypto-PAn module is designed to be integrated into a network traffic mon-
itoring system. These systems typically consist of a passive link tap, a packet
capture device such as an Endace Measurement Systems DAG card[7], and a
storage system (Figure 1). For the purposes of research, network traffic mon-
itors generally only store truncated packet headers[8,9,10], or aggregated flow
records[11,12]. In such systems, the proposed Crypto-PAn module can be inte-
grated into the datapath of the packet capture device, performing anonymization
in real-time before the records are exported to the storage system, eliminating
the need for off-line processing.

2.1 Crypto-PAn Scheme

The Crypto-PAn function, F (a), is defined as follows[4]:

F (a) = L(R(P(a), κ)) ⊕ a (1)

where a = a1a2 . . . a32 is the original IPv4 address and L returns the least
significant bit (LSB). R is the pseudo-random function, in this case AES, with
secret key κ. P is a padding function that expands a1a2 . . . a32 into a 128-bit
string in order to match the block size of the AES cipher. The exclusive-or
operation is represented by the ⊕ symbol.

For a more detailed treatment of the algorithm, including proofs, see [4].

2.2 Hardware Architecture

Figure 2 is a block diagram of the Crypto-PAn architecture, showing the primary
components. The module must first be initialized with a 256-bit secret key; 128-
bits are used for key-expansion by the AES engines, while the remaining 128-bits
are encrypted with an AES engine, and the encrypted block used as the pad.
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Fig. 2. Hardware Architecture of Crypto-PAn module

Our design divides the Crypto-PAn module into three stages: input stage,
pseudo-random function, and output stage. The design reduces the heavy AES
computation by pre-computing a number of bits and storing them in a look-up
table, in order to reduce the hardware requirements.

In the input stage, original IP addresses are first loaded into a register. For
each bit n which has not been pre-computed, the bits a1a2 . . . an are padded
out to 128-bits with the pre-determined pad, and passed to an AES engine.
Because there is no data dependence between the computation for each bit of
the anonymized IP address, AES engines operating in parallel can be utilised to
increase throughput.

The AES engines contained in the pseudo-random function stage may be
multi-cycle or fully pipelined. In the case that the AES engines are multi-cycle,
a register is used to pass the original IP address through to the output stage.
The latency of fully pipelined AES engines could be up to 30 cycles or more, in
which case it could be possible that multiple original IP addresses are in-flight
simultaneously in the AES pipeline during a given cycle. In this case, a FIFO
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may be required to pass the original IP addresses along with the prefixes being
encrypted.

There are two constraints on the number of AES engines that may be utilised
in parallel. Firstly, the sum of the number of AES engines and the number of
prefix bits pre-computed should not exceed the length of the IP address, in this
case, 32. If more parallelism is needed, multiple Crypto-PAn modules should be
instantiated in parallel. Secondly, if the number of IP address bits divided by the
number of AES engines in parallel is not a whole number, this would result in
“bubbles” in the pseudo-random function stage, unless extra hardware is added
at the input and output stages to process two IP addresses in the same cycle.
Both of these cases should be avoided.

The output stage combines the appropriate bits of the AES engine results
into a register until all the bits necessary have been obtained. Only the least
significant bit of the AES engine result is used, and multiplexers are used to
select AES engine outputs into the correct bit register. A number of bits from
the original IP address are used to look-up an anonymized prefix from a table
of pre-computed results. The pre-computed portion of the IP address and the
remaining part that required pseudo-random function computation are combined
and the exclusive-or operation is performed with the original IP address. The
result is the anonymized IP address with the prefix preserved.

A change in secret key would require all the data in the pre-computed prefix
look-up table be re-loaded, the AES engines would require key-expansion to be
performed, and the pad would need to be encrypted. The computation of prefixes
for the look-up table, key-expansion for the AES engines, and the calculation of
the pad can be performed on a work-station off-line, and the data loaded into
the Crypto-PAn module via a control bus, or through partial re-configuration.

3 Technology-Independent Analysis

We quantify the maximum throughput of the Crypto-PAn architecture Tmax, in
IP addresses per second, by providing technology independent algebraic expres-
sions. The equations may be used to estimate the resource usage given a target
throughput, or to predict the maximum throughput of a given device. Tmax is
expressed as a function of Taes, the throughput of an AES engine (in bits per
second), and Naes, the number of AES engines utilised in parallel. The num-
ber of pre-computed bits, Nprecomp, is also used to determine Tmax. Equation 2
expresses Tmax in terms of IPv4 addresses per second:

Tmax =
TaesNaes

128(32 − Nprecomp)
, for 1 ≤ Naes ≤ 32 − Nprecomp (2)

where Taes is expressed in bits per second. The throughput of an AES engine
instance is divided by the block size, 128 bits, as one block cipher is required for
every bit of the IP address. The AES throughput is further divided by the number
of IP address bits remaining after accounting for the prefix bits that have been
pre-computed. Finally, the total throughput is multiplied by the number of AES
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instances operating in parallel, Naes. The number of AES engines operating in
parallel must be less than or equal to the number of IP address bits remaining
after prefix pre-computation. If (32 − Nprecomp) ÷ Naes /∈ W, then additional
circuitry is required to process two IP addresses in the same cycle. Otherwise,
AES engines will be under utilised.

To determine the maximum number of AES engines that may be instantiated
in parallel, we assume that the modules shown in Figure 2, with the exception
of the AES engines, use a constant number of logic cells, Lconst. This is used
to determine one maximum value for the number of AES engines based on the
logic resources available on a particular device:

Naes−max−logic =
⌊

Ltotal − Lconst

Laes

⌋
(3)

where Laes is the logic required for a single instance of the AES engine, and Ltotal

is the total logic available on the device. Another possible value for the maximum
number of AES instances, Naes−max−bram, is derived from the availability of
block RAM’s on the target device:

Nbram−avail = Ntotal−bram − Nconst−bram − Nprecomp−bram (4)

Naes−max−bram =
⌊

Nbram−avail

Naes−bram

⌋
(5)

where Naes−bram is the number of block RAM’s required to instantiate a single
AES engine, Ntotal−bram is the total number of block RAM’s available on the
device, and Nconst−bram is the constant number of block RAM’s used by modules
other than the pre-computation module and the AES engines. The calculation
of Naes−max−bram also depends on the number of block RAM’s used by the
pre-computation module, Nprecomp−bram, which is defined as follows:

Nprecomp−bram =
⌈

Nprecomp−bits × 2Nprecomp−bits

Dbram

⌉
(6)

where Nprecomp−bits is defined as the number of bits of the prefix to be pre-
computed, and Dbram is the density of an individual block RAM on the target de-
vice. Thus, Nprecomp−bram is the number of block RAM’s needed to pre-compute
Nprecomp−bits.

We determine the maximum number of AES engines possible with the con-
straints placed on logic and block memory resources, with Equations 3 and 4, as
follows:

Naes−max = min (Naes−max−logic, Naes−max−bram) (7)

The throughput of the Crypto-PAn engine Tmax, in IPv4 addresses per second,
can be related to the Ethernet link speed, Teth. The minimum sized Ethernet
frame is defined to be 64 bytes, with eight bytes of preamble and start of frame
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delimiter, and eight bytes of inter-frame gap. Thus, in the worst case, a packet
is received every 80 bytes. The relationship between Tmax and Teth is as follows:

Teth =
80 × 8 × Tmax

2 × 2
(8)

where Teth is expressed in bits per second. As there are two IPv4 addresses in
a packet to be anonymized, and a link is assumed to be a full-duplex link with
two directions, Tmax is divided by four.

In Section 5, these equations are utilized to estimate the throughput and area
of the Crypto-PAn module with two fully pipelined implementations of AES, on
a Xilinx Virtex-4 XC4VFX60-10 device.

4 Device-Specific Mapping

We developed a prototype for the proposed architecture using a development
board populated with a Xilinx Virtex-4 XC4VFX60-10 FPGA and two gigabit
Ethernet transceivers. A fully-pipelined 32 Gb/s encryption only AES engine
was developed for the prototype.

4.1 AES Engine

The Advanced Encryption Standard (AES) was standardised by the US Fed-
eral Institute of Processing Standards (FIPS) in 2001[13]. The algorithm is a
symmetric block cipher, processing data in blocks of 128 bits. The AES stan-
dard supports cipher keys of sizes 128, 192 and 256 bits. Since the introduction
of the standard, many implementations in reconfigurable logic have been docu-
mented, some focusing on high-throughput[14,15], while others were optimized
for minimum area.

Our AES design is fully-pipelined and highly parametrized. It supports the
following parameters:

– All the key sizes specified for the standard: 128, 192 and 256-bit;
– Encryption and/or decryption;
– Substitution boxes can be implemented with either logic or dual-ported block

RAM’s;
– Key-expansion performed in hardware, or off-line on an embedded micro-

processor or workstation.

The AES datapath consists of ten rounds, each of which contains three pipeline
cuts, designed to reach a clock rate of 250 MHz on the target device. Thus the
AES engine has a latency of 31 cycles. The datapath is the width of a 128-bit
AES block, and thus at 250 MHz, has a throughput of 32 Gb/s.

The primary difference between our design and others[14,15,16,17] is the im-
plementation of substitution boxes (S-Boxes). We instantiate dual-ported block
RAM’s by hand so that each block RAM implements two S-Boxes, where as
other designs don’t appear to utilize both ports available on some devices block
RAM’s.
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4.2 Crypto-PAn Implementation

The Crypto-PAn design was prototyped with two 32 Gb/s AES-128 encryption
only engines, and a twelve bit pre-computed prefix look-up table. Key expansion
for the AES engine, encryption of the secret pad, and the pre-computation of
the prefix look-up table was performed offline on a workstation.

The number of block RAM’s required for the pre-computation look-up table
can be determined with Equation 6. With the Xilinx XC4VFX60-10, Dbram =
18kbit, and thus the look-up table requires three block RAM’s.

The design was synthesized with Synplicity Synplify Pro and Xilinx ISE 8.2,
with a hardware test-bench and an integrated logic analyzer (Xilinx Chipscope).
Verification was performed with a test-bench consisting of a test vector generator,
checker and error counter. The test vectors used were those distributed with
Jinliang Fan’s software implementation of Crypto-PAn. Furthermore, the output
of the Crypto-PAn unit was observed with the integrated logic analyzer.

The prototype design, including the test-bench, used 4308 logic cells and 143
block RAM’s. 138 block RAM’s were used by the two AES engines, two block
RAM’s were used by the test-bench, and three block RAM’s were used by the
look-up table. The Crypto-PAn module required 4262 logic cells, 4124 of which
(96%) were used by the AES engines. On the Xilinx XC4VFX60-10 device, the
Crypto-PAn module requires 8% of the available logic cells, and 61% of the block
RAM resources.

5 Performance Results

The resulting maximum throughput of the Crypto-PAn module, in terms of
IPv4 addresses per second, can be computed using Equation 2. Using Naes = 2,
Taes = 32× 109, and Nprecomp = 12, the maximum throughput is determined to
be 25 × 106 IP addresses/second. The maximum worst case Ethernet line-rate
able to be processed can then be determined using Equation 8. With Tmax =
25 × 106, Teth = 4 × 109 b/s, enabling four gigabit Ethernet links (8 Gb/s total
throughput) to be monitored while guaranteeing no packet loss.

6 Conclusion

We have described how prefix-preserving anonymization can be used in traffic
monitoring systems to increase compliance with the law and to reduce the risk of
private or confidential information being inferred from the headers of IP packet
traces. Having found that current software-based solutions of Crypto-PAn lack
the ability to process traffic at even 100 Mb/s line-rates, we provide a scalable
hardware architecture capable of supporting multi-gigabit line-rates and beyond.

A 32 Gb/s fully pipelined AES engine was described, and in conjunction with
partial pre-computation of prefixes, was used to develop a prototype capable of
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sanitizing four 1 Gb/s Ethernet links at line-rate. The prototype was synthesized
for a Xilinx XC4VFX60-10 FPGA, and used 4262 logic cells and 141 block
RAM’s.

Future work includes extending the work to support 128-bit IPv6 addresses.
The technology independent analysis also showed that smaller multi-cycle AES
engines operating in parallel with logic/block RAM ratios closer to that of the
target device would utilize resources better and maximise throughput.
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rithm Implementations. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)



Arithmetic Design on Quantum-Dot Cellular

Automata Nanotechnology

Ismo Hänninen and Jarmo Takala

Tampere University of Technology,
Department of Computer Systems

PO BOX 553, FI-33101 Tampere, Finland
{ismo.hanninen,jarmo.takala}@tut.fi

http://www.tkt.cs.tut.fi/index-english.html

Abstract. Quantum-dot cellular automata nanotechnology promises
molecular digital circuits with ultra-high clock frequencies, to replace
the traditional approaches reaching their physical limits. Although large
scale utilization requires still several breakthroughs, there has been se-
rious effort in digital design on this sunrise technology. This review de-
scribes the basic concepts of the nanotechnology and the most important
existing designs, providing new research directions for the digital com-
munity.

Keywords: Nanotechnology, digital design, arithmetic.

1 Introduction

Quantum-dot cellular automata (QCA) is a promising nanotechnology, which
offers ways to reach molecular circuit densities and clock frequencies surpassing
traditional digital technologies by several orders of magnitude. The concept was
introduced in early 1990s [1, 2] and has been demonstrated in laboratory envi-
ronment with small proof-of-concept systems [3,4, 5], but large scale utilization
requires several breakthroughs in the manufacturing and design methods. The
revolutionary operating principle of QCA promises outstanding energy efficiency
and performance, which has evoked considerable interest in the digital commu-
nity and resulted in early effort to design logic circuits, showing the potential
gains and challenges, although the implementation technologies do not yet exist.

This paper presents a review of digital design on QCA, concentrating on
the state-of-the-art computer arithmetic, and is organized as follows: Section 2
summarizes the background of the nanotechnology, and Section 3 describes the
existing design proposals and some prospective research directions. Section 4
concludes the paper with discussion of the general challenges of nanotechnology
design work.

2 Background of QCA Nanotechnology

The intuitive QCA concept is based on bistable cellular automata, where the
information storage and transport utilizes the local position of charged particles

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 43–52, 2008.
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Fig. 1. QCA primitives: a) type 1 cell and wire, b) type 2 cell and wire, c) coplanar
wire crossing, d) inverters, and e) three-input majority gate

inside a small section of the circuit (there is no electrical particle current at
all). This QCA cell has a limited number of quantum-dots, which the particles
can occupy, and these dots are arranged such that the cell can have only two
polarizations (two degenerate quantum mechanical ground states), representing
binary value zero or one. A cell can switch between the two states by letting the
charged particles tunnel between the dots quantum mechanically.

The cells exchange information by classical Coulombic interaction. An input
cell forced to a polarization drives the next cell into the same polarization, since
this combination of states has minimum energy in the electric field between the
charged particles in neighboring cells. Information is copied and propagated in
a wire consisting of the cell automata. Figures 1(a) and 1(b) show the avail-
able two cell types and the corresponding wires, which can be positioned to
have minimal interaction with each other. This enables a coplanar wire crossing
shown in Fig. 1(c), where the crossing wires are on the same fabrication layer.
Also a traditional multi-layer crossing can be constructed, but it requires an
implementation technology with many active QCA layers on top of each other.

The QCA cells can form the primitive logic gates shown in Figs. 1(d) and 1(e).
The inverter is usually formed by placing the cells with only their corners touch-
ing, effectively inverting the electrostatic interaction, since the quantum-dots of
different polarizations are misaligned between the cells. Other gates are usually
based on a three-input majority gate, settling into minimum energy between the
input and output cells: the gate performs the two-input AND-operation when
the third input is fixed at logical zero, and the two-input OR-operation when
the third input is fixed at logical one. Together with the inverter this forms a
universal logic set, capable of implementing any combinatorial computation. [1].

A clocking mechanism determines via an electric field when the cells are un-
polarized, latch their input values, and start driving other cells. It is used both
for designing sequential circuits and forcing the circuit to stay in the quan-
tum mechanical ground state, which represents the correct computation result
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Fig. 2. Full adder: a) optimal majority logic structure [7] and b) QCA layout [9] (Copy-
right IEEE)

and successful signal propagation. The active phase of the clock is applied to a
small section of the circuit at each instant, with two possible approaches: zone
clocking, where the cell array is divided into discrete zones controlled by several
clocks, different clock phases for adjacent zones [2], and wave clocking, where
an inhomogeneous, smoothly graded electric field is propagated over the QCA
plane [6]. Clocking leads to digital circuits, which are inherently pipelined on
very fine-grained level, and provides also energy for true signal gain.

3 Design Proposals

There has been a considerable amount of research into circuits on QCA nano-
technology, aiming to solve the challenges of general digital design.

3.1 Basic Components

FullAdder. Thepapers introducing theQCA concept contained already sketches
of a combinatorial full adder unit [1], followed by a more feasible clocked design
in [2], consisting of five majority gates and three inverters. An optimal majority
logic full adder, shown in Fig. 2(a), consists of only three majority gates and two
inverters, producing the sum s and the carry cout as follows [7]:

s = M [cout, cin, M(a, b, cin)] ; (1)
cout = M(a, b, cin) ; (2)

M(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c) (3)

where a and b are the input operands, cin is the input carry, and M() is the
majority function with ∧ and ∨ denoting the logical AND and OR operations.
A general three-variable majority logic optimization was developed in [8].

The QCA designs are pipelined on the sub-gate level, since reliable operation
requires that only a small section of the circuit is switching at one time. The zone
clocked full adder layout shown in Fig. 2(b) forms a two-stage pipeline, which
can compute with two different operands in parallel. The total latency of the
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sum is two full QCA clock cycles (each consisting of four clock fractions), while
the carry is computed in one clock cycle. This is beneficial for designing larger
arithmetic units, since the propagating carries usually limit the performance. [9].

Register. The nanotechnology prevents the construction of pure combinatorial
logic, but on the other hand, the implementation of registers is very straight-
forward: a wire of QCA cells placed on several clocking zones acts as a D-type
flip-flop, or a shift register, separating and delaying the bits with the pipeline
stages. Other latch and flip-flop types can be similarly constructed, based on the
inherent self-latching of the technology, with some additional logic gates. [10].

State Machine. The basic construct of all sequential logic, the state machine,
has not been much utilized in current QCA designs. Small units are easily con-
structed, but for larger designs with the traditional Mealy or Moore approach,
the nanotechnology presents a considerable challenge: the logic computing the
next state and the feedback wiring cause always a significant delay, before the
new state can be stored back into the register bank. This delay, caused by the lay-
out translating directly into timing requirements, slows down the update speed
of the state transitions, wasting a growing number of clock cycles, proportional
to the number of states. More research effort is needed here, possibly coming up
with a beneficial distributed state machine scheme. [11, 10].

3.2 Multi Bit Adders

Serial And Ripple Carry Adder. Multi bit addition on QCA nanotechnology
was first sketched with a standard bit-serial adder [12, 13] and a ripple carry
adder (RCA) [7,14], directly based on the full adder component, with the logical
structures shown in Figs. 3(a) and 3(c). Radius-of-effect induced noise coupling
was first considered in the designs proposed in [15], and we presented more
cost-efficient QCA layouts shown in Figs. 3(b) and 3(d) [9].

The performance of the basic n-bit adders was compared in [16], showing that
the QCA serial and the ripple carry adder have exactly the same latency, which
is linearly proportional to the operand word length. This is due to the pipelined
operation of the full adder units in both structures. However, the throughput
is very different, since the serial adder computes a single addition, while the
pipelined ripple carry adder computes several additions in parallel, completing
a result on every clock cycle. The circuit area of the serial adder is constant,
while the pipelined RCA unit grows quadratically, in proportion to the operand
length. [9].

Carry Lookahead Adder And Condition Sum Adder. The carry looka-
head adder (CLA) and the condition sum adder (CSA, a case of the carry-select
approach), were adapted to QCA and analyzed in detail in [17]. These designs
with reduced carry rippling were shown to have also reduced latency, but due to
the pipelined operation, the throughput is the same as the simple ripple carry
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Fig. 3. Serial adder: a) logical structure and b) QCA layout (Copyright IEEE), and
ripple carry adder (4-bit case): c) logical structure and d) QCA layout (Copyright
IEEE)

adder has. An interesting result was to show that a CLA unit with block size of
four bits can actually have a smaller circuit area than a corresponding RCA unit
(on traditional technologies, the CLA is usually much larger than the RCA).
Both the CLA and CSA structures suffer from considerable layout complexity,
and very long wires spanning across the design.

Advanced Structures. The studied adder structures do not quite match the
characteristics of QCA nanotechnology, one reason being the wiring overhead
costing heavily in circuit area. Parallel prefix adders might have the beneficial
properties, since they can be laid out in a regular systolic array and compute in a
highly parallel manner, and there are other approaches that have not been tried:
divergent number systems and redundancy schemes might match the technology
well, and sequential control might offer adaptive tolerance against circuit faults.

3.3 Multipliers

Binarymultiplication onQCA nanotechnologyhas been based on the direct paper-
and-pencil algorithm, with n-bit input operands A = (an−1, . . . , a1, a0) and B =
(bn−1, . . . , b1, b0), resulting in a 2n-bit output M = (m2n−1, . . . , m1, m0), where
a0, b0, and m0 are the least significant bits, respectively:

an−1 · · · a1 a0

× bn−1 · · · b1 b0

an−1b0 · · · a1b0 a0b0

an−1b1 · · · a1b1 a0b1 0
... 0 0

+ an−1bn−1 · · · a1bn−1 a0bn−1 0 0 0

m2n−1 · · · · · · · · · · · · m1 m0
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Fig. 4. Serial-parallel multiplier: a) logical structure, b) 3-bit QCA layout, and c) 16-bit
QCA layout

Each single bit multiplication aibj is computed with an AND-gate, forming
a summand sk, and each row of the summands corresponds to a partial product.
Two approaches for multiplexing the actual hardware and fixing the amount of
parallel computations have been proposed (see comparison in Table 1).

Serial-Parallel Multiplier. The first multiplier proposal for QCA processes
one of the operand words in bit-serial format and the other as a parallel word,
accumulating each partial product with the chain of the time-multiplexed basic
cells, shown in Fig. 4(a). Since distance translates into timing on QCA, the serial
operand ai cannot reach every multiplier cell on the same clock cycle, and it has
to be fed through a shifting pipeline, effectively spreading the computation both
in space and time. The final result is available in bit-serial format on the output
mk on the right, on consecutive clock cycles, the latency growing linearly with the
operand word length, while the throughput has inverse dependence. [12, 19, 18]

A QCA layout of the design is shown in Figs. 4(b) and 4(c), where the register
components have been absorbed into the clocking zones of the serial adders. The
active circuit area is linearly proportional to the operand word length, but the

Table 1. Asymptotic comparison of the n-bit QCA multipliers

Design Latency Throughput Area

Serial-Parallel Multiplier [12,18], 3n + 2 1/(2n) n2

optimized in [19] 2n

Array Multiplier [18] 4n − 1 1 40n2



Arithmetic Design on Quantum-Dot Cellular Automata Nanotechnology 49

 

 

m1m2m3m4m5

b2

b1

b0

a0a1a2

m0

‘0’

‘0’

‘0’‘0’‘0’

‘0’

0

2

3456
345

35 4
6

1
1

45 56
6

67
78 8910

11 10 9
91011

9
89

78
7

9
8 6

23
23

(a)

-1.00

-1.00

-1.00

-1.00-1.00

-1.00

-1.00

-1.00

-1.00-1.00

-1.00 -1.00

-1.00

a0
a1
a2

b0

b2
b1

m5 m4
m3
m2

m0
m1

-1.00

(b)

Fig. 5. Array multiplier: a) logical structure and b) 3-bit QCA layout

wiring necessary for distributing the parallel operand, originating from a compact
bus, is actually quadratical (shown on the bottom-left). This wiring overhead
makes also the total area of the practical design to depend quadratically on the
word length, contrary to the original expectations of reaching a linear area. [18].

Array Multiplier. Our multiplier proposal maps the paper-and-pencil algo-
rithm on a pipelined lattice of identical functional cells, shown in Figs. 5(a).
Both of the operands and the result are in parallel format, and the structure has
one cell for each summand, but due to the self-latching of the technology, the
partial products are computed on consequent clock cycles and consequent rows.
The computation proceeds from top-right to bottom-left corner, the diagonal
critical path latency growing linearly with the operand word length, while the
throughput of the unit is constant, one result completed each clock cycle.

A QCA layout of the design is shown in Fig. 5(b). The circuit area in the
active core array grows quadratically in proportion to the operand word length,
and there is also a quadratical wiring overhead on the outer edges, since the
operand bits have to be delayed according to the computation order between
different rows and columns. The array multiplier reaches top performance, due
to maximally parallel computation, but it is up to 40 times as large as the
previous structure; however, this ratio will not be exceeded, since on QCA, both
of the designs have quadratical area (as opposed to traditional technologies). [18].
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Advanced Structures. The proposed units represent opposite extremities in
the design space of variable parallelism, where one might find other approaches
that form a more beneficial compromise between performance and cost. The
adaptation of sophisticated algorithms has not been explored, one of the reasons
being the lack of an efficient state machine to enable complex sequential control.
The logical next step is to implement multiplier recoding (at first, the Booth
algorithm) on QCA, followed by advanced number systems including redundancy
to achieve carry-free computation and improved reliability.

3.4 Other Designs

Arithmetic proposals for QCA include a binary shifter [14] and a bit-stream
pattern matcher [20], which offers a starting point for developing a full capability
cross correlator. A decoder, full adder, and parity checker were presented in [21],
using a tile-based approach aiming at modular low-level design and redundancy
against manufacturing defects, while small sequential circuits and a re-timing
approach for delay matching were presented in [10] (gray code counter, traffic
light controller, ISCAS89 S27 benchmark) and [22] (semaphore, lock).

A globally asynchronous, locally synchronous (GALS) paradigm was devel-
oped in [23] to ease the timing requirements of QCA design and demonstrated
with a null convention logic (NCL) full adder unit, and a multiplexer, decoder,
full adder and flip-flop with a two-dimensional clocking scheme were presented
in [24], to achieve systolic placing with reduced wire lengths.

4 Discussion

The existing design proposals for QCA are well justified by the benefits of mas-
tering the new technology quickly, and guiding the development of the physical
implementations at their early stage; additional research effort in the directions
pointed out in this paper is most welcome, since the most suitable approaches
are still to be found. However, there are some general challenges requiring the
attention of digital designers and computer architects, described shortly here.

The technologies-to-be are predicted to have very high defect rates in the
manufacturing process, and various dynamic faults occurring also during the
runtime operation. Circuit primitives (logic gates, wires, and registers) function
with unideal stochastic characteristics, and the probability of failure grows with
design size. The primitives cannot be made robust enough, to enable a straight-
forward composition into robust circuits, which makes the fabrication of large
components extremely challenging. The reliability problem is not yet adequately
solved on QCA: The existing reliability improvements are aimed at certain design
levels, but used separately, they are not strong enough to overcome the enormous
amount of predicted failures. This raises the reliability as the highest design
priority, requiring a multi-level redundancy scheme to be developed.

An epoch-making reduction in the power dissipation of digital circuits can be
achieved with QCA. The nanotechnology completely avoids the major dissipation
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present in traditional technologies, since the signal energy needed to overcome the
thermal noise floor does not have to be repeatedly dissipated. Most of the energy
can be transferred from cell to cell and re-used, making the thermodynamical ir-
reversibility dissipation a significant factor [25]. The Landauer’s principle (bit era-
sure requires always dissipation) [26] will limit the operating frequency of irre-
versible circuits, if they are implemented with the very much sought-for molecu-
lar QCA [18]. The only way to reach smaller power densities and higher clock fre-
quencies is to adopt reversible computing principles into the designs [27], with the
various approaches offered by QCA technology: reversible components on several
design levels and tailored clocking [28].

Systems design has to cope with abundance of new technology characteristics,
in addition to the growing importance of reliability and power issues, affecting
everything from the physical layout to high architectural level. The design chal-
lenges call for novel architectural solutions, modeling abstractions, and computer
tools for the nanotechnology.
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Abstract. The fast growth of bioinformatics field has attracted the at-
tention of computer scientists in the last few years. At the same time
the increasing database sizes require greater efforts to improve the com-
putational performance. From a computer architecture point of view, we
intend to investigate how bioinformatics applications can benefit from fu-
ture multi-core processors. In this paper we present a preliminary study
of the Cell BE processor limitations when executing two representative
sequence alignment applications (Ssearch and ClustalW). The inherent
large parallelism of the targeted algorithms makes them ideal for archi-
tectures supporting multiple dimensions of parallelism (TLP and DLP).
However, in the case of Cell BE we identified several architectural limi-
tations that need a careful study and quantification.

1 Introduction

Currently, bioinformatics is considered as one of the fields of computing technol-
ogy with fastest growth and development [4]. This is a vast field composed of
a variety of tasks, each with different computational requirements, algorithms,
data, and so on. One of the most important tasks is the comparison and align-
ment of biological sequences (DNA, proteins, RNA), which is basically the prob-
lem of finding an approximate pattern matching between two or more sequences.

At the algorithmic level, researchers have developed various approaches for
sequence comparison that fall into two categories: global alignment and local
alignment. In the first case, the goal is to find the best possible alignment that
span the entire length of the sequences. In contrast, the local alignment goal is
to identify some regions of the sequences where similarity between them exists.
Several algorithms using dynamic programming techniques (DP) for the two
approaches have been proposed. Among them, the Smith-Waterman (SW) [17]
and the Needleman-Wunsch (NW) [9] algorithms are widely recognized as the
best optimal methods for local and global alignment, respectively [15].
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c© Springer-Verlag Berlin Heidelberg 2008



54 S. Isaza et al.

Regardless of the method used, sequence comparison using DP techniques
is computationally demanding. In addition, the scenario becomes more chal-
lenging when it is required to study the similarity between one sequence and
hundreds of thousands of sequences stored in a database; or when it is required
to compare complete genomes of several organisms. The computational complex-
ity of these algorithms depends on the sequences length, for example, for two
sequences of length n and m, both algorithms have a complexity of O(nm). Effi-
cient implementations of the targeted algorithms are available in the Ssearch [10]
and ClustalW [7] applications. They are widely recognized applications to per-
form sequence comparison and are representative of the field. Ssearch performs
pairwise sequence alignment using the SW algorithm while ClustalW performs
multiple sequences alignment using a slightly modified NW version. It is im-
portant to note that sequence alignment is a typical operation in many other
bioinformatics algorithms, making our analysis applicable to a wider range of
applications.

The traditional general-purpose processors do not provide a sufficient solution
for bioinformatics. In addition, processor designers are lately moving away from
the old superscalar approach toward multi-core systems. This is also the case
with the Cell Broadband Engine processor [8] developed jointly by IBM, Sony
and Toshiba, whose original target was the game box market. However, sev-
eral researchers have shown that due to its characteristics, this processor is able
to achieve impressive performance in other application domains such as signal
processing, encryption, scientific applications and more [11]. The Cell BE ar-
chitecture has a PowerPC Processing Unit (PPU) connected to 8 128-bit SIMD
cores called Synergistic Processing Units (SPUs). Each SPU has a 256KB scratch
pad memory called Local Store (LS) and the nine cores are connected through
the Element Interconnect Bus (EIB). The EIB is a circular bus made of two
channels in opposite directions each. It is also connected to the L2 cache and
the memory controller.

The main contributions of this paper are:

– mapping and optimization alternatives for Ssearch and ClustalW applica-
tions while targeting Cell BE;

– qualitative analysis of the architectural limitations identified during the map-
ping process and their impact on performance;

– some architectural guidelines for future multi-core systems aiming at im-
proved performance for bioinformatics workloads.

This paper is organized as follows: Section 2 provides a brief overview of
recent works related to bioinformatics applications implementations on different
platforms. Section 3 describes our experimental methodology. Section 4 outlines
Ssearch and ClustalW applications and their implementations on the Cell BE.
Section 5 analyzes the limitations we found when porting the applications to
Cell BE. Finally, section 6 summarizes the paper and describes some future
work directions.
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2 Related Work

Various implementationsof bioinformatics applicationsondifferentplatformshave
been reported in the literature. Some of them are based on Single-Instruction
Multiple-Data (SIMD)augmentedgeneralpurposeprocessors [12,14] to exploit the
fine-grainedparallelismpresent in the sequence alignment applications. In thepast,
the SIMD processing has proven its efficiency in other application domains such as
multimedia. However, due to the permanent and almost exponential growth of the
amount of biological data, it becomes clear that this solution alone does not satisfy
the performance demands imposed by this field.

On the other hand, many studies about bioinformatics workloads target par-
allel machines combining the SIMD approach with multiple processing nodes.
This in order to additionally distribute the job among the different nodes. Most
of these studies focus on performance evaluation and parallelization on large
high-performance supercomputers [16]. These alternatives, however, are expen-
sive and exhibit severe limitations especially in terms of power consumption.

The use of heterogeneous multi-core architectures on a single chip, e.g. the
Cell BE, combines the parallelism benefits of multiprocessor systems, with the
lower power consumption and higher speed interconnects of the systems on a
chip. However, these alternatives have not been completely studied as a solu-
tion for bioinformatics applications. Sachdeva et. al [13] present some results on
the viability of Cell BE for bioinformatics applications (ClustalW, Ssearch and
Hmmer), all performing sequence alignment. In the case of Ssearch, a prelimi-
nary evaluation is reported that uses the SPUs for a pairwise alignment of only
8 sequence pairs that fit entirely in the LS memories. We believe that in or-
der to get valid conclusions and given the different programming strategies and
models that Cell BE offers, it is important to analyze the architecture behavior
under the most demanding conditions, such as using large, realistic databases
containing many sequences with various sizes.

Vandierendonck et al. [18], describe their ClustalW parallelization experience
for the Cell BE. Their work is mainly focused on various programming optimiza-
tions while our interest is on discovering architectural limitations for a wider
range of bioinformatics applications.

3 Experimental Methodology

As starting point of our study, we selected Altivec-SIMD implementations of
Ssearch [2] and ClustalW [1]. We ported them to the Cell BE ISA and used an
IBM BladeCenter featuring two 3.2 GHz SMT-enabled Cell BE processors each
with 512 MB of RAM to gain realistic performance results.

For the Ssearch inputs we use several protein query sequences against the Swis-
sProt database [3]. These queries represent a range of well characterized protein
families used in other works to evaluate different alignment approaches [12]. The
SwissProt database contains 333,445 sequence entries. We used the blosum62
amino-acid substitution score matrix [6]. For ClustalW, the default applica-
tion parameters were used and the inputs are taken from BioPerf benchmark
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suite [5]. Here we show results for data set C, which is the most challenging
case containing 318 sequences of average length 1043. The applications are im-
plemented in C. The code segments running on the PPU were compiled with
ppu-gcc 4.1.1 with -O3 -maltivec options. The code in the SPU side was com-
piled using spu-gcc with -O3 option.

4 Applications Description and Implementation on Cell
BE

This section introduces Ssearch and ClustalW workloads and discusses specific
issues related with their Cell BE implementations. It is important to recall that
our intention is not the development of highly optimized Cell BE specific versions
of the targeted applications. Our main focus is on the analysis of the limitations
that Cell BE presents at several levels in order to guide the architecture design
of future multi-core systems for bioinformatics applications.

4.1 Ssearch

The Ssearch execution scenario is as follows: a query sequence is compared
against all sequences of the SwissProt database. Each comparison uses the SW al-
gorithm to compute the similarity score between sequences. During this process,
scores or weights are assigned to each character-to-character comparison: positive
for exact matches/substitutions, negative for insertions/deletions. As described
in the SW algorithm [17], the optimal score is computed recursively. This re-
cursion has data dependencies as shown in figure 1, where computation of the
matrix cell (i, j) depends on previous results (i−1, j), (i, j−1) and (i−1, j−1).
Note that the computation of cells across the anti-diagonals are independent and
the final score is reached when all the symbols have been compared.

4.2 SIMD and Cell BE Implementation of the Ssearch

As previously mentioned, the SW algorithm is the main kernel of Ssearch. It
takes about 90% of the execution time of the entire application, making it the
target for optimizations. For our study, we use the following implementations:

* Ssearch Altivec SIMD version:
This version uses the Altivec SIMD extension of PowerPC architecture with
128-bit wide registers to extract data-level parallelism by calculating temporal
vector of scores of cells parallel to the anti-diagonals, as it is shown in figure 2.
The process starts at the upper left moving from left to right and from top to
bottom. Every time a vector anti-diagonal is computed, some temporal results
have to be stored in memory because they will be used in the computation of
a vector in the next row. In previous works [14], advantages and limitations of
this approach were discussed extensively. In this work, we concentrate on the
analysis of Cell BE implementations.
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Fig. 1. Data dependencies in SW Fig. 2. Proccess by blocks of SW

* Ssearch version using one SPU:
Porting the SW implementation of Ssearch to Cell BE ISA has relevant details
that impact the performance. They are described in section 5. In this implemen-
tation, we perform the same methodology that was commented in the previous
paragraph for the Altivec SIMD version. In this case, the processing sometimes
requires that temporal computations of a row (the border between rows) have to
be stored back in memory instead of the SPUs LS. This is because the amount
of computed temporal data of a row (that depends on the sequence sizes) does
not always fit entirely into the LS. As a result of this, not only the traffic gets
increased between memory and the LS, but also the processing of data has to
wait for the DMA transfers completion. However, the impact of this limitation
can be diminished by using multi-buffering to overlap the SPU processing with
DMA transfers of the next data. The important decision here is the choice of
appropriate block sizes of data to be computed and transferred using DMA.
Figure 2 shows an example where the block size equals to 4.

* Parallel Ssearch version 1 using multiple SPUs:
In addition to the SIMD version above, a multi-SPU implementation was devel-
oped. The main idea was to use all available SPUs to perform the comparison
between a query against the database sequences. This approach is shown in fig-
ure 3a, where every SPU is responsible for the comparison between the query
and a group of database sequences, using the same scheme as in the previous
paragraph. There are two important issues to consider: the efficiency of data
transfers between the main memory and the LSs and the scalability. The former
is related to the cases when all SPUs are communicating to the PPU simulta-
neously and saturating the Element Interconnect Bus. The latter is important
when a higher number of SPUs are used for the parallelization.

* Parallel Ssearch version 2 using multiple SPUs:
Another parallel alternative is shown in figure 3b. In this case the available SPUs
perform the comparison between the query and a single database sequence. In
this case, the computation of each matrix is distributed between the SPUs, that
is, each SPU is responsible for computing several rows of the matrix. For example,
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Fig. 3. Multi-SPU parallel options: (a) One SPU processes groups of sequences and
(b) available SPUs process each sequence

when 8 SPUs are used, SPU0 computes row 0, row 8, row 16, etc; SPU1 computes
row 1, row 9, row 17, and so on. There are some possible advantages of this alter-
native and the following issues are important: better bandwidth utilization and
scalability than the previous approach. Improved bandwidth utilization can be
achieved since not all the temporal results are written to main memory (the SPUs
exchange data in a streaming fashion). This approach seems more scalable with
increasing sequence sizes because each SPU is holding smaller pieces of data in its
LS as compared to version 1 above. This alternative, however, requires additional
synchronization between SPUs that can potentially degrade the performance.

4.3 ClustalW

Unlike pairwise sequence alignment, multiple sequence alignment (MSA) appli-
cations like ClustalW, align a set of sequences altogether, that are expected to
have some evolutionary relationships. While for pairwise alignments it is still
computationally feasible to produce optimal alignments with DP algorithms, for
MSA is prohibitive and heuristics must be applied to avoid time and space com-
plexity explosion. In particular, the time complexity of ClustalW is O(n4 + l2),
where n is the number of sequences and l their length. Using a technique called
progressive alignment [7], ClustalW performs the multiple alignment in three
main steps: 1) All-to-all pairwise alignment, 2) Creation of a phylogenetic tree,
3) Use of the phylogenetic tree to carry out a multiple alignment.

According to profiling results of the original code, the function that performs
the alignments in the first step, i.e. forward pass, consumes about 70% of the
total execution time. This function calculates a similarity score among two se-
quences implementing a modified version of NW, following an approach similar
to the one shown in figure 1. It is called n(n-1)/2 times to perform the multi-
ple alignment of n sequences (all-to-all). As opposed to the first step, the final
alignment step performs only n-1 alignments.

It is important to mention that forward pass iterations are data independent
making parallelization very appealing. Furthermore, the interior of the function
can be at least partially vectorized to explore data-level parallelism.
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4.4 Cell BE Implementation of the ClustalW

We ported forward pass function to the SPU ISA and implemented a number of
optimizations. DMA transfers are used to exchange data between main memory
and the SPUs LS. Saturated addition and maximum instructions were emulated
with 9 and 2 SPU instructions respectively. The first optimization uses 16-bit
vector elements instead of 32-bit. This theoretically allows doubling the through-
put but requires the implementation of an overflow check in software.

Inside the inner loop of the kernel there are instructions responsible for loading
the sequence elements to be compared and using them to index a matrix that
provides the comparison score. This is a random scalar memory access that is
performed within a loop also containing a complex branch for checking boundary
conditions. This type of operations are very inefficient in the SPUs. We have
unrolled this loop and manually evaluated the boundary conditions outside the
inner loop. Section 5 discusses the impact of these optimizations.

In the case of the multi-SPU versions of ClustalW, the PPU distributes pairs
of sequences for each SPU to process independently. A first such a version was
implemented using a simple round-robin strategy for load distribution. This
version is not really efficient and is not further discussed. A second strategy uses
a table of flags that SPUs can raise to indicate idleness. This way the PPU can
take better decisions on where to allocate the tasks. As explained in the previous
section, the parallelization of forward pass in multiple threads is easy so there is
no need to optimize much the load balancing nor the communication efficiency.
Section 5 shows the scalability of our strategy.

5 Analysis of Cell BE Limitations and Results

Experiments performed included a number of optimizations that increase per-
formance. We have looked mostly at parallel execution issues due to the inherent
parallelism existing in the applications and some relevant Cell BE ISA aspects
that impact the performance.

5.1 Performance Results

Figure 4 shows the execution of Ssearch on different platforms. As expected,
scalar executions are less efficient than the remaining alternatives. The G5 plat-
form contains a powerful out-of-order superscalar PowerPC970 that runs scalar
code very efficiently while the PPU has limited capabilities (less functional units
and registers, in-order execution, etc). Similar observation is done for the Altivec
G5 and AltivecPPU alternatives. The Cell1SPU version is 1.07× slower than
the AltivecPPU version. We have found two main reasons for this: 1) the non
existing support for some instructions in the SPU ISA (discussed in the next
section) and 2) the need of transferring data between LS and memory. We are
currently working on further code optimizations to reduce the data reorganiza-
tion overhead and the traffic between main memory and the LSs.
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Figure 6 shows the execution time of Ssearch to compare a query sequence of
length 553 and the whole SwissProt database. Results correspond to the parallel
version 1. Each group of bars represents execution using a different number of
SPUs. And each bar of the group corresponds to a different block size (in bytes)
that is transfered between LS and memory as it was described in section 4.2.
These results show that the strategy of computing several vector anti-diagonals
of the same row before sending results to main memory is an important source
of speedup (Using 1 SPU: 2,33× faster between 32 bytes and 512 bytes bars.
Using 8 SPUs: 2,13× faster between 32 and 512 bytes bars). Other interesting
observation is related to performance scalability across the number of SPUs used.
Figure 5 shows how the performance scale almost linearly with the number of
SPUs. However, part of our current work is to investigate this trend with greater
number of SPUs.

Fig. 4. Ssearch execution on different
platforms

Fig. 5. Speedup across SPUs (using 512-
byte block size)

Figure 7 shows a comparison of ClustalW running on various single-core plat-
forms as compared to different versions using a single SPU. Since the clock
frequency of the G5 is more than twice as low as the Cell, it is clear that in
terms of cycles it outperforms any Cell 1SPU version. The fourth bar shows the
straightforward SPU implementation of ClustalW, where only thread creation,
DMA transfers and mailboxes are implemented for basic operation and no at-
tention is given to optimizing the kernel code. The fifth bar shows a significant
speedup (1.7×) when using 16-bit data type. This double vector parallelism is
most of the time achievable but the program should always check for overflow
and go back to the 32-bit version if needed. Since the SPUs do not provide any
support for overflow check (unlike the PPU), this had to be implemented in
software and consequently affecting the performance. The next two bars show
results for unrolling a small loop located within the inner loop of the kernel al-
lowing us to achieve accumulative 2.6× speedup. And the last two versions went
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Fig. 6. Time vs SPUs for different block sizes in Ssearch

further into optimizing this small loop by removing the boundary conditions
involved in a scalar branch and handling them explicitly outside the loop. This
final (accumulative) optimization provided about 4.2× speedup with respect to
the initial version.
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Figure 8 shows the scalability of ClustalW kernel when using multiple SPUs.
The black part of the bars reveals a perfect scalability (8× for 8 SPUs). This
is due to the relatively low amount of data transfered and the independence
between every instance of the kernel. In future experiments, it will be interesting
to see how far will this perfect scalability continue.

After the successful reduction of the execution time for forward pass, signif-
icant application speedups are only possible by accelerating other parts of the
program. The progressive alignment phase is now the portion consuming most
of the time. This issue is currently being studied.
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5.2 Analysis of Limitations

Here we list and discuss some limitations we found at both architecture- and
micro-architecture levels. Although experiments have given us an insight about
the individual contribution to performance degradation, an on-going quantitative
study will tell us the real impact of every limitation.

* Unaligned data accesses: The lack of hardware support for unaligned data
accesses is one of the issues that can limit the performance the most. When the
application needs to do unaligned loads or stores, the compiler must introduce
extra code that contains additional memory accesses plus some shift instructions
for data reorganization. If this sort of situation appears in critical parts of the
code (as is the case in ClustalW), the performance will be dramatically affected.

* Scalar operations: Given the SIMD-only nature of the SPUs ISA and the
lack of unaligned access support, scalar instructions may cause performance
degradation too. Since there are only vector instructions, scalar operations must
be performed employing vectors with only one useful element. Apart from power
inefficiency issues, this works well only if the scalars are in the appropriate
position within the vector. If not, the compiler has to introduce some extra
instructions to make the scalar operands aligned and perform the instruction.
This limitation is responsible for a significant efficiency reduction.

* Saturated arithmetics: These frequently executed operations are present
in Altivec but not in the SPU ISA. They are used to compute partial scores
avoiding that they are zeroed when overflow occurs with unsigned addition.
This limitation may become expensive depending on the data types. For signed
short, 9 additional SPU instructions are needed.

* Max instruction: One of the most important and frequent operations in
both applications is the computation of a maximum between two or more values.
The SPU ISA, unlike Altivec, does not provide such an instruction. It is then
necessary to replace it with two SPU instructions.

* Overflow flag: This flag is easily accessible in Altivec in case the application
needs a wider data type to compute. In the SPU this is not available and it has
to be implemented in software adding overhead.

* Branch prediction: The SPUs do not handle efficiently branches and the
penalty of a mispredicted branch is about 18 cycles. The SPU will always predict
branches as non-taken unless a software branch hint explicitly says the opposite.
Although some control-dependencies (branches) can be converted in data depen-
dencies (using select instruction) some others cannot and branches will remain.
The kernel of ClustalW has several branches that, when mispredicted, reduce
the application execution speed.

* Local Store size: As was mentioned in section 4.2, the size of SPUs LS is
relevant because it is not always possible to ensure that each database sequence,
query sequence and temporal computations fit in the LS. Our SW implemen-
tation takes this into account by partitioning the work in blocks, as explained
before. Other optimizations are being currently developed to dynamically iden-
tify whether space in main memory is required or not. This will help to reduce
data transfer between LS and memory.
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It is important to say that there are other commercial processors (apart from
PowerPC) that support the missing features we found in Cell BE. For instance,
TriMedia processor supports unaligned memory accesses, Intel SSE has saturat-
ing arithmetic instructions, etc. However, not all these features can be found on
a single product.

6 Conclusions and Future Work

In this paper we described the mapping and some optimization alternatives of
two representative bioinformatics applications targeting Cell BE. We have also
presented a qualitative analysis of the architectural shortcomings identified dur-
ing this process. Our study revealed various architectural aspects that negatively
impact Cell BE performance for bioinformatics workloads. More precisely, the
missing HW support for unaligned memory accesses, the limited memory band-
width and LS sizes appear to be the most critical. However, additional experi-
ments are being performed in order to measure bandwidth usage, load balancing,
LS usage, functional units usage, stall rates and communication patterns. In ad-
dition, our future work involves the usage of architecture simulation techniques
in order to evaluate possible solutions to the identified limitations. We are using
this research as guidance for the architecture design of future multi-core systems
targeting bioinformatics. We intend to widen our study to other applications of
the same field.

This work is our first step towards future multi-core architectures incorporat-
ing domain specific bio-accelerators. We believe that heterogeneous multi-core
architectures able to exploit multiple dimensions of parallelism are a valid option
that will play an important role in the future of bioinformatics.

Acknowledgements

This work was partially sponsored by the European Commission in the context
of the SARC Integrated Project #27648 (FP6), the HiPEAC Network of Ex-
cellence, the FEDER funds under contract TIN2007-60625 and by the Spanish
Ministry of Science. The authors would like to thank the Barcelona Supercom-
puting Center for the access to the Cell BE blades.

References

1. Altivec enabled clustalw1.83, http://powerdev.osuosl.org/node/49
2. Fasta web site, http://wrpmg5c.bioch.virginia.edu/fasta www2/
3. Swissprot, universal protein database, http://www.expasy.org/sprot/
4. Bioinformatics market study for washington technology center (June 2003),

http://www.altabiomedical.com
5. Bader, D.A., Li, Y., Li, T., Sachdeva, V.: Bioperf: A benchmark suite to eval-

uate high-performance computer architecture on bioinformatics applications. In:
IEEE International Symposium on Workload Characterization (IISWC), pp. 1–8
(October 2005)

http://powerdev.osuosl.org/node/49
http://wrpmg5c.bioch.virginia.edu/fasta_www2/
http://www.expasy.org/sprot/
http://www.altabiomedical.com


64 S. Isaza et al.

6. Henikoff, J., Henikoff, S., Pietrokovski, S.: Blocks+: a non-redundant database of
protein alignment blocks derived from multiple compilations. Bioinformatics 15
(1999)

7. Higgins, D., Thompson, J., Gibson, T., Thompson, J.: Clustal w: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22,
4673–4680 (1994)

8. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Shippy, D.: Introduction to the
cell multiprocessor. IBM Systems Journal 49(4/5), 589–604 (2005)

9. Needleman, S., Wunsch, C.: A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. Journal of Molecular Biology 48,
443–453 (1970)

10. Pearson, W.R.: Searching protein sequence libraries: comparison of the sensitivity
and selectivity of the smith-waterman and FASTA algorithms. Genomics 11, 635–
650 (1991)

11. Petrini, F., Fossum, G., Fernandez, J., Varbanescu, A.L., Kistler, M., Perrone, M.:
Multicore surprises: Lessons learned from optimizing sweep3d on the cellbe. In:
IEEE International Parallel and Distributed Processing Symposium, IPDPS, pp.
1–10 (2007)

12. Rognes, T.: Rapid and sensitive methods for protein sequence comparison and
database searching. PhD thesis, Institue of Medical Microbiology, University of
Oslo (2000)

13. Sachdeva, V., Kistler, M., Speight, E., Tzeng, T.H.K.: Exploring the viability of
the cell broadband engine for bioinformatics applications. In: Proceedings of the
6th Workshop on High Performance Computational Biology, pp. 1–8 (2007)

14. Sanchez, F., Salami, E., Ramirez, A., Valero, M.: Performance analysis of sequence
alignment applications. In: Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), pp. 51–60 (2006)

15. Shpaer, E., Robinson, M., Yee, D., Candlin, J., Mines, R., Hunkapiller, T.: Sensitiv-
ity and selectivity in protein similarity searches: A comparison of smith-waterman
in hardware to blast and fasta. Genomics 38, 179–191 (1996)

16. Smith, S., Frenzel, J.: Bioinformatics application of a scalable supercomputer-on-
chip architecture. Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques 1, 385–391 (2003)

17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147, 195–197 (1981)

18. Vandierendonck, H., Rul, S., Questier, M., Bosschere, K.D.: Experiences with par-
allelizing a bio-informatics program on the cell be. In: Stenström, P., et al. (eds.)
Third International Conference, HiPEAC. LNCS, vol. 4917, pp. 161–175. Springer,
Heidelberg (2008)



802.15.3 Transmitter: A Fast Design Cycle Using OFDM
Framework in Bluespec

Teemu Pitkänen1, Vesa-Matti Hartikainen1, Nirav Dave2, and Gopal Raghavan3

1 Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
{teemu.pitkanen, vesa-matti.hartikainen}@tut.fi
2 Massachusetts Institute of Technology, Cambridge, USA

ndave@csail.mit.edu
3 Nokia Research Center Cambridge

Nokia Corporation
gopal.raghavan@nokia.com

Abstract. Orthogonal Frequency-Division Multiplexing (OFDM) has become
the preferred modulation scheme for both broadband and high bitrate digital
wireless protocols because of its spectral efficiency and robustness against mul-
tipath interference. Although the components and overall structure of different
OFDM protocols are functionally similar, the characteristics of the environment
for which a wireless protocol is designed often result in different instantiations of
various components. In this paper we present a new baseband processing trans-
mitter case, namely 802.15.3 (WUSB), to existing OFDM framework which con-
sists highly parametrized code in Bluespec for two different wireless baseband
processing cases, namely 802.11a (WiFi) and 802.16 (WiMAX). The design cy-
cle for transmitter of WUSB took only six week’s for two designers which were
not familiar with Bluespec, WUSB protocol or the OFDM framework.

1 Introduction

Wireless systems are experiencing rapid development as more applications call for mo-
bile and distributed use. To effectively meet the vastly varying application requirements
(e.g.,power, bitrate, and flexibility) a variety of different wireless protocols have been
designed. In recent years, Orthogonal Frequency-Division Multiplexing (OFDM) has
become preferred modulation scheme for both broadband and high bitrate digital wire-
less protocols because of its spectral efficiency and robustness against multipath inter-
ference. These protocols are sufficiently similar that many of the component blocks in
transceivers across protocols could be described using the same parametric module with
different parameters in the various forms including bitsizes, default values, pipelining
strategies and combinational functions.

Despite the capability for sharing and the significant time pressure on designers to
ship designs quickly, in practice engineers still write each design from scratch ignoring
possible reuse between designs. Much of this is due to the fact that while most hardware
description languages (HDLs) like Verilog and VHDL provide the ability for parame-
terization, only very low-level parameterization is supported (e.g.,values and bit-sizes)
leaving many important parameterizations very hard to describe.
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Recently, Ng et. al. developed a parameterized suite for quickly generating OFDM
baseband transceivers [1] in Bluespec SystemVerilog (BSV), a high-level hardware de-
scription language which can be compiled mechanically in to efficient high-quality RTL
code [2]. This suite consists of a number of highly parameterized OFDM component
blocks which can be reused across multiple designs. These parametric designs cause no
additional hardware overhead, as the Bluespec compiler can remove all static parame-
terization during design elaboration.

The OFDM framework provides specific baseband implementations for both the
802.11a (WiFi) and 802.16 (WiMAX) protocols. Using this as a starting point we add
the design of a 802.15.3 (WUSB) transmitter. This work took very little time, taking
only six weeks for two designer unfamiliar with both BSV and OFDM protocols to
complete.

2 OFDM Framework

The OFDM Framework used has been developed as part of the ARMO project by
Nokia Research Center and Massachusetts Institute of Technology [3]. The project
started out focusing on studying the cost-area tradeoffs possible in the RTL design of
a 802.11a transmitter [5]. As the project progressed it became clear that many of the
key blocks in both the transmitter and reciever, the receiver size, it then became clear
that many of the key blocks, while complex, were reusable across multiple OFDM-
based protocols. This framework has been released to the public under the MIT
license [4].

The structure of OFDM implementations described in this framework is shown in
Figure 1. To aid comprehension, we briefly discuss the high-level functionality of each
blocks:

Fig. 1. Structure of the OFDM Framework and changes made
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2.1 Transmitter

TX Controller: Receives information from the MAC. Adds header data before actual
payload and generates control for all the subsequent blocks.

Scrambler: Randomizes the data stream to remove repeated patterns.

FEC Encoder: Encodes and adds some redundancy to data making it possible for the
receiver to detect and correct errors. The encoded data is punctured to reduce the trans-
mitted number of bits.

Interleaver: Interleaves bit stream to provide robustness against burst errors.

Mapper: Passes interleaved data through a serial to parallel converter, mapping groups
of bits to separate carriers, and encoding each bit group by frequency, amplitude, and
phase. The output of the Mapper contains the values of data subcarriers for an OFDM
symbol.

Pilot/Guard Insertion: Adds the values for pilot and guard subcarriers to OFDM
symbols.

IFFT: Converts OFDM symbols from the frequency domain to the time domain.

CP Insertion: Copies some samples from the end of the symbol to the front to add
some redundancy to the symbols to avoid Inter-Symbol Interference. The block also
adds a preamble before the first transmitted symbol.

After CP insertion, OFDM symbols are outputted to a DAC, which converts them to
analog signals which can them be transmitted.

2.2 Receiver

The receiver roughly applies the transmitter transformations in reverse. However, it
requires some additional feedback to help synchronize to to the expected phase.

Synchronizer: Detects the starting position of an incoming packet based on preambles.

Serial to Parallel (S/P): Removes the cyclic prefix (CP) and then aggregates samples
into symbols before passing them to the FFT. It also propagates the control information
from the RX Controller to subsequent blocks.

FFT: Converts OFDM symbols from the time domain into the frequency domain.

Channel Estimator: Compensates for frequency-dependent signal degradation based
on pilots and corrects the errors caused by multi-path interference.

Demapper: Demodulates data and converts samples to encoded bits.

Deinterleaver: Reverses the interleaving and restores the original arrangement of bits.

FEC Decoder: Uses the redundant information to detect and correct errors occurred
during transmission.

Descrambler: Reverses the scrambling.

RX Controller: Based on the decoded data, the RX Controller generates the control
feedback to S/P block.
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3 The WUSB Transmitter

The OFDM Framework provided a very good starting point for WUSB implementation.
It included almost all of the functionality needed, and most changes were just changes to
parameters of the framework. Only few bigger changes to the framework were needed.
Figure 1 illustrates the structure of OFDM Framework and changes necessary for WUSB.
In this chapter we discuss some of the specific changes and how they were represented.

3.1 Parameterization

Many of the modifications needed in the WUSB design are captured by the component
module parameterization. Table 1 lists some of the parameter settings of each protocol.

Convolutional Encoder: One of the simplest examples of parameterization we en-
countered was in the convolutional encoder. In this design, we needed to generate a
3-bit output for each 1-bit input using a moving history of 8 input bits. To represent this
change the input and output sizes to match the expected rates (8 and 24 respectively)
and pass in three values representing the individual polynomial for each output bit. The
computation necessary for each output bit can be described by a single polynomial in
Z2. These are represented as 8− bit values. Thus we need to pass in 3 8-bit values to
the parameterized module.

Due to a restriction in the current Bluespec compiler, to generate a separate Verilog
module for this block, the Bluespec module be non-parameterized. This requires us to
add a small wrapper module to restrict the type and provides the modules arguments to
make the module self-contained.

typedef 8 ConvEncoderInDataSz;
typedef TMul#(3,ConvEncoderInDataSz) ConvEncoderOutDataSz;
module mkConvEncoderInstance(ConvEncoder#(TXGlobalCtrl,

ConvEncoderInDataSz,
ConvEncoderOutDataSz));

ConvEncoder#(TXGlobalCtrl, ConvEncoderInDataSz
, ConvEncoderOutDataSz) convEncoder

<- mkConvEncoder(convEncoderG1, convEncoderG2,convEncoderG3);
return convEncoder;

endmodule

Puncturer: A slightly more interesting parameterization can be found in the puncturer.
Puncturing is a feature of the FEC encoder which allows the transmitter to reduce the
number of bits being sent. For higher transmission rate, in low-noise channels, the en-
coded data is punctured by deleting bits before transmission and replacing them with
fixed values on reception. This reduces the number of bits to be carried over the channel
as we can depend on the error correction in the receiver to correctly reconstruct the data.

The WUSB protocol specifies 7 separate puncturing modes, of which 5 are already
described the previous framework. To add a new puncturing mode, we define the new
functions puncturerHalf which takes 3 bits and returns 2 bits and puncturerEleven-
ThirtySecond which takes 33 bits and returns 32 bits.
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function Bit#(2) puncturerHalf (Bit#(3) x);
return {x[2], x[0]};

endfunction
function Bit#(32) puncturerElevenThirtySecond (Bit#(33) x);
return x[31:0];

endfunction

Each function is then extended to the apply to the input size using the parFunc function.
These new functions, along with the other functions corresponding to the other modes
along with a function which determines which function corresponds to which mode
(puncturerMapCtrl).

puncturer <- mkPuncturer(puncturerMapCtrl,
parFunc(f0_sz,puncturerHalf),
parFunc(f1_sz,puncturerTwoThird),
...,
parFunc(f6_sz,puncturerFiveEigth) );

Using functions as parameters is possible because functions are considered first-order
objects in Bluespec.

Table 1. Algorithmic settings for WiFi, WiMAX and WUSB

Blocks Parameters WiFi WiMAX WUSB
Scrambler Generator X7 +X4 +1 X15 +X14 +1 X15 +X14 +1

Polynomial
Convolutional Generator 133oct & 171oct 133oct & 171oct 133oct, 165oct

Polynomials & 171oct
Interleaver Coding Rate 1/2, 2/3, 1/2, 2/3, 1/2,11/32,

3/4 3/4, 5/6 5/8, 3/4
No. Stages 2 2 3

Mapper Modulation BPSK, QPSK, BPSK, QPSK, QPSK
Schemes 16-QAM, 64-QAM 16-QAM, 64-QAM

Pilot & Guard No. Pilot 4 8 12
Insertion Subcarriers

No. Guard 12 56 10
Subcarriers

FFT/IFFT Size 64 256 128
Cyclic Prefix Size 1/4 1/32, 1/16, N/A

Insertion 1/8, 1/4

3.2 Further Changes

Since the frame header is protocol specific, the transmission controller also needs to
be changed. Figure 2 illustrates the WUSB frame format. While, this format is similar
to both the WiFi and WiMAX protocols, these differences are not well-suited to pa-
rameterization, since the description complexity required to express the controller in a
parametric way is worth the cost of writing a new module.
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Fig. 2. PLCP Frame Format for WUSB

The biggest change in the controller was the addition of a side scrambler. In WiFi
all header data is scrambled. In WiMAX all header data is sent unscrambled. In WUSB
we had to change scrambling of the headers, since a combination of the MAC header
and header checksum (HCS) needed to be scrambled and the PHY header should not
be scrambled. Since the scrambled parts of the header do not fit the byte alignment, we
either needed to change the scrambler to support non-byte aligned scrambling, add a
new module to the main pipeline for adding tail bits after the PHY header or add a side
scrambler that is used only for encoding scrambled part of the header. We choose to
implement the later two options. The two options we considered are illustrated in Fig-
ure 3 We decided to use a separate side scrambler. This allows use the library scrambler
implementation more easily. The side scrambler is only used for headers; the payload
is still scrambled by the main scrambler instance in the pipeline.

Interleaver: In WiFi and WiMAX the data interleaving is done only inside symbol. In
WUSB, the interleaver must support interleaving of data across symbol triplets. This
change did not require changing the parameteric interleaver, only a new interleaving
function using three symbols as an input, not one.

Fig. 3. Implementation Options for Header Scrambling. Option 1 adds a “header filler” module
to add tail bits. Option 2 uses a separate side-scrambler for side scrambling.



802.15.3 Transmitter: A Fast Design Cycle Using OFDM Framework 71

Preamble Generation: In WUSB, there are 4 different preambles added to symbols in
both the time and frequency. The choice for these is not specified. As a result we only
implemented the first choice. Augmenting the system to add the other preambles can be
easily done.

Previous OFDM transmitters did not need to support frequency-domain preambles.
To add this functionality, we need to add a new block into our pipeline: the CP Channel
Training Block. This block adds 6 prefixed sequences to the input of the IFFT sepa-
rately. The system sends this frequency preamble before sending the symbol header
and payload.

Mapping Values: In WiFi and WiMAX the mapping always remains the same in
WUSB there are two different mappings. At data rates below 110 Mbps we encode
100 input bits to 50 complex numbers and calculate complex conjugate of the numbers
and append it to end to form a single OFDM Symbol. At faster rates this redundancy
is removed and an OFDM symbol is formed directly of 200 input bits. Other change is
contents of the guard bits at the edges of frequency. WiFi and WiMAX uses zeros as
contents of guard bits. Instead in WUSB we replicate outermost data bits and use them
as content of the guard bits.

The Mapper for WUSB only needs to support QPSK-modulation, and therefore in-
put and output sizes are less constrained than other schemes where other modulation
schemes more restrict the choices, meaning the provided parameterized mapper did not
cover all cases for the protocol. To generate a WUSB mapper we had to manually strip
modulation and generate a specialized mapper. A more parameterized mapper must be
designed to capture this implementation as well.

4 Implementation Results

In the following section we describe the result of synthesis of the WUSB transmitter
and evaluate the value of the OFDM framework.

4.1 Technical Results

The WUSB transmitter is synthesized with Synopsys Design Compiler to 130 nm tech-
nology with 1.5 V operating voltage and power dissipation is acquired through gate-
level simulation at 100 MHz.

The results of the synthesis are presented in the Table 2. Most of the area and power
are consumed by the 128-point IFFT block. We compare our designs to two comparable
FFT implementations compatible with our design.

To meet the frequency requirements of the protocol, we must be able to complete an
IFFT in 312.5 ns. We use a folded pipeline design using the same Bluespec pipelining
framework [5]. Thus it is easy to quickly change the area/performance tradeoff. Our final
IFFT design uses 32 radix-2 butterflies and requires 14 cycles of computation per input.

To match the performance requirements for our IFFT block needs to run at 44.8
MHz. In fact, the critical path 9.5 ns which allows the block to be clocked at 105 MHz.

Other FFT implementations in the literature have similar results. Mathew et. al [6],
use a pseudo parallel datapath structure to calculate a 128-point FFT in 10 cycles that
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Table 2. Area and Power Dissipation of WUSB Transmitter

Component # of Gates (K) Power (mW) Component # of Gates (K) Power (mW)

TX Controller 2.8 1.18 Scrambler 0.5 0.085

FEC Encoder 7.5 2.31 Interleaver 15.9 4.81

Pilot & Guard 47.5 14.4 CP Channel 46.2 10.2

Insertion Training

IFFT 718.2 36.2 CP Insertion 23.6 0.45

Mapper 57.8 11.3 Total 920 92.3

can be clocked at 275 MHz. The architecture used 3 butterfly stages, and with each but-
terfly stage containing 8 separate datapaths. Power figures for this design are measured
using a clock speed of 33.3 MHz.

Chen et. al [7] present a different 128-point FFT core, with four radix-22 and four
radix-22/2 butterflies. The first two and last two stages each use a separate sets of
butterflies requiring 32 cycles to compute one input. The design also used six eight-
bank single ported RAMs, two coefficient ROMs, and two address generators. While
the authors were only able to run the system at 66 MHz, scaling down the technology
would give comparable results to ours.

The comparison FFT presented here is shown in Table 3. Area and power consump-
tion numbers is normalized to 130 nm technology to give a fair comparison between
designs. the maximum clock describes how fast each design can run, required clock de-
scribes how fast the design must run to achieve the performance requirement. The pa-
rameterized BSV code requires approximately 50% more area and slightly more power
compared to [6], and 3.5 times more area compared [7]. From experience much of this
area overhead is due to our choices of using radix-2 butterflies as the base block in our
design. Larger radices would improve the design, though they would require the FFT
either be partitioned into two parts, or the inputs changed so that the 27 size input is
naturally factor by the radix size.

5 Development Experience

The WUSB design was done by two engineers as a six-week project. Only one had
any previous hardware design experience (i.e. VHDL). The pair spent approximately
two weeks learning the language, the OFDM framework, and the WUSB specification
before starting on the design. The remaining four weeks to complete the transmitter
design and the much of the receiver design. We estimate that it would take another 1-2
weeks to complete the receiver design.

One of the keys points which makes the OFDM framework so effective is the rich
parameterization properties of Bluespec. Bluespec’s rich type structure, parameterized
types, and higher-order functions, made expressing much of the parameterized designs
natural. Functions do not need to be represented as bit-vectors to be a parameter. Most
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Table 3. Comparison between FFT architectures

Name Butter- Radix of # of Gates Power Tech max.clk req. clk
flies Butterflies (K) (mW) (MHz) (MHz)

BSV 32 2 718.2 36.2 130 nm 105 44.8
[6] 24 8, 2 968 60.6 180 nm 275 31.7

normalized 504.9 31.6
[7] 8 4, 2, 5.85mm2 n/a 250 nm 66 102.3

approx. 760.3
normalized 205.6

of the work involved in using the library was simply understanding what block was
desired.

The OFDM systems modular decomposition also proved to be highly valuable. be-
cause all modules were expected to be latency insensitive and have FIFO buffering,
adding new stages to the pipeline and setting up complete testbenches were both easy.
One can handle each input or output to a module separately.

Other Bluespec language features also proved to be helpful in a number of minor
ways. Bluespec’s static elaboration allowed the design to be expressed recursively; the
system elaborates the description into non-recursive description automatically. Type
provisos which represent the assumptions needed to use a function of module provided
both useful documentation as well guarantees that designs are being parameterized in
legal ways.

6 Conclusions

The primary goal of this work was not to see how much time and effort was needed
in generating a new protocol; it was to see how effectively high-level design language
ideas could be leveraged by engineers not already steeped in the language. In our views,
this work has been a stunning success. The OFDM framework, though well structured,
represents a fairly sophisticated system with significant parameterization. For inexperi-
enced engineers to be able to understand, use, and even augment the system in so short
a time argues for how natural the system is represented.

Our experience suggests that in the hands of experienced designers, our findings will
be even more magnified, leading to greater focus on much larger design choices and
hopefully leading to better implementation results.
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Abstract. Modern multi-core processors suffer from the lack of a pro-
gramming model which allows efficient utilization of the available hard-
ware. Massive software overhead is required to handle task scheduling
and synchronization, resulting in power inefficiencies. In this paper we
present a C++ based, real-time enabled task level programming model,
which allows efficient hardware utilization. Task scheduling and synchro-
nization is performed by a hardware unit at run-time. The automated
scheduler unit is guided by offline information extracted from source code
by a specialized compiler

1 Introduction

Heterogeneous MPSoC will be the preferred topology for high performance, low
power signal processing systems of the future [1]. These systems will be set up
from established, highly optimized components such as RISC processors, DSPs,
ASIPs and ASICs. MPSoCs can deliver unlimited processing power to the pro-
grammer. Unfortunately programming such systems is not trivial [2]. Under-
standable programming models which utilize hardware effectively are required,
in order to get the maximum benefit out of parallel systems.

Besides the programming model, MPSoCs impose other problems which could
easily dilute the benefits drawn out of the parallelism. Two of the most profound
problems are overheads introduced by context switches and hardware/software
interfacing [3]. It is common practice to add specialized accelerators to signal
processing systems in order to improve performance and power efficiency. How-
ever, the interface between hardware accelerators is usually interrupt based.
This causes scheduling overhead for processing interrupt requests, drawing off
compute power from the application and reducing the energy efficiency.

Another problem is the increasing number of applications running concur-
rently on modern signal processing systems such as mobile phones. Many of
these applications are required to fulfill real-time requirements. This causes an
increase of scheduling overhead which forces the hardware designers to put more
powerful hardware into the system, causing further degradation of power effi-
ciency. Future systems will have to cope with even more concurrent and dynam-
ically changing applications. Unfortunately most existing programming models
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are totally unsuitable for handling dynamics. This is mainly, because the user
is required to perform resource allocation statically at compile time. With the
increasing number of applications which are candidate to be run in parallel in a
real-time environment, this is getting impractical. Therefore, dynamic resource
allocation at run-time is required from our point of view.

We are addressing all of these challenges with our platform concept. To solve
the problem of resource allocation and task synchronization we pick up the idea
of having a task level programming model along with a dedicated hardware unit
named CoreManager [4]. The CoreManager is absorbing a good portion of the
operating system scheduler work and removes interrupts for accelerator synchro-
nization completely. We extend [4] by adding real-time capabilities to the pro-
gramming model and the CoreManager. According to [4], we call our real-time
enabled CoreManager version Real-Time-CoreManager (RT-CoreManager). Of-
fline information which is needed by the RT-CoreManager to perform task pri-
oritization is added automatically by a specialized compiler.

In this paper we are focusing on the real-time programming model (section
4) and its required compiler (section 5). Nevertheless, a short introduction into
hardware architecture is given in section 3. Section 6 gives some first results
obtained from the compiler. A conclusion and an overview over future work can
be found in section 7.

2 Related Work

In [5] recommendations for the development and evaluation of future “manycore”
processors are given. MPSoCs are proposed to provide adequate processing capa-
bilities at low power consumption. In order to program such architectures, more
human centric, and efficient parallel programming models are claimed. Existing
parallel programming models such as OpenMP [6], NVidias CUDA [7], Cilk [8] or
μTC [9] are targeted shared memory architectures. They extend the C language
in order to allow the programmer to specify parallelism explicitly. However, these
programming models exploit fine grain parallelism and heterogeneity is not sup-
ported. MPSoCs for application tailored signal processors require a programming
model exploiting coarse grain parallelism, since fine grain instruction and data
parallelism is already utilized by the single processing elements (e.g. with very
long instruction words and single instruction multiple data processing).

Sequoia [10] is a programming model explicitly requiring an abstract descrip-
tion of the processor memory hierarchy. Programs are architecture independent
and therefore portable to new targets. However, static mapping of tasks to re-
sources is required.

A hardware concept for heterogeneous MPSoCs along with an appropriate
C-based programming model is proposed by Seidel [4]. CellSs [11], which was
developed to utilize the parallelism of the Cell BE [12], is closely related to this
approach. Both propose a runtime scheduler which dynamically distributes tasks
to processing elements. However, CellSs performs scheduling in software, while
Seidels approach uses a dedicated hardware unit called CoreManager. We extend
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Seidels work by adding real-time capabilities to the programming model and the
hardware unit. When writing about real-time in this paper, we always refer to
soft or semi-hard real-time constraints, since these are the types of constraints
typically appearing in multimedia and communication systems.

3 MPSoC Platform Overview

A basic schematic of our MPSoC platform is depicted in Fig. 1. The software
part is required in order to compile programs for the underlying hardware ar-
chitecture. This will be detailed in section 5. In this section we will give a short
overview over the hardware required to execute our real-time programs.
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Fig. 1. Architecture schematic

Host Processor. The system may have one or multiple host processors (HP)
which are typically RISC processors. They are used to run the operating system
and control code. The host processors share the global memory. Whenever a task
is instantiated from control code, the HP sends a task description containing all
relevant information for task execution to the RT-CoreManager.
Processing Elements. A processing element (PE) can be any kind of hard-
ware. This includes general purpose, domain and application specific processors
as well as application specific fixed logic blocks or components for external in-
terfacing. PEs are used to execute computational kernels. Each PE has its own
local memory which is managed by the RT-CoreManager. PEs do not have direct
access to external resources. In order to allow a wide range of existing compo-
nents to be used, we do not expect PEs to be able to support context switching
in hardware.
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Real-Time CoreManager. The RT-CoreManager is the key component of
the system. It is responsible for mapping tasks to the processing elements and
handles task prioritization and dependency checking. Furthermore it performs
local memory management for the PEs and controls data transfers from and
to them. The real-time extension prioritizes tasks based on the remaining time
(slack) until the tasks latest possible start time weighted with the static priority
of the thread. Scheduling is performed by a list scheduler which handles highest
priority tasks first. In average 60 clock cycles are required to schedule one task.

Interfacing between RT-CoreManager and host processor is done without any
interrupts. The HP sends task descriptions and receives status information over
memory mapped registers.

4 Programming Model

The programming model is a crucial component of a MPSoC platform, since it
influences the acceptance among programmers. Languages such as C, C++ or
Java are popular and therefore more likely to be accepted than other languages.
We use C++ as the base language in order to implement our programming model
in the most convenient way.

Our real-time programs basically consist of two components: tasks and real-
time threads. A task is an atomic computational kernel which is executed on
a processing element. Tasks consume and produce chunks of data. They come
in two different flavors: either a task is a program running on some kind of
programmable processor or it is an algorithm executed on an ASIC. We assume
tasks to have a run-time of at least a few hundred cycles.

Real-time threads are threads with an execution time limit. They live as nor-
mal threads in the real-time operating system and are executed interleaved on
the host processor. Tasks are instantiated from the sequential thread code and
are executed concurrently on the available processing elements. When a task
was instantiated, the threads continues execution immediately. Thread execu-
tion only has to be stopped, if the task queue of the RT-CoreManager is full or
if control code depends on data which is computed by one of the PEs. Synchro-
nization statements to wait for data to be ready are generated automatically by
our compiler. Synchronization between threads can be implemented using any
mechanism provided by the used threading model.

Threads and Tasks have to be identified explicitly by the programmer. But
in contrast to other approaches, the decision which kind of PE or even which
concrete PE is used is not done at compile-time. Instead of this the programmer
simply defines one or more types of PEs a task can be executed on and leaves
the selection of the appropriate PE to the RT-CoreManager. For automatic
extraction of task deadlines, the programmer annotates the maximum execution
time of a task on each PE. The RT-CoreManager performs dependency checking
between tasks at run-time and schedules a task not before all its dependencies
are resolved. Thus, tasks are reordered at run-time. This is similar to instruction
scheduling in superscalar processors.
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4.1 Real-Time Support

Each thread has a static priority which reflects the importance of meeting its
deadline. As an example threads of media applications will typically have less
priority over communication applications in mobile phones. Static priorities and
deadlines are assigned by the programmer.

In a real-time system only threads have an explicit deadline but task do
not. To allow dynamic prioritization of tasks by the CoreManager, each tasks
deadline in a thread must be annotated. Since this would be a cumbersome
and error prone task for the programmer, we compute task deadlines using a
specialized compiler. All information gathered by the compiler are annotated in
the so called Thread Description Graph which is linked into program and guides
the RT-CoreManager scheduling.

The Thread Description Graph (TDG) is a directed acyclic graph consisting
of nodes representing task instances and edges representing possible control flow
paths in the thread. Edges have annotated the probability of the control flow
path to be taken. Tasks have annotated different parameters:
Program memory locations: For each possible implementation on a process-
ing element, the CoreManager needs a pointer to the location of program code
for this task. If the PE is an ASIC which does not require program memory, a
unique dummy pointer is used. This is required since program memory pointers
are used to track the path of execution in the RT-CoreManager. Starting from
an initial root node provided with the start of a thread, the RT-CoreManager
checks which path of execution is taken, whenever a new task arrives. The track-
ing mechanism compares the program memory pointers of the new task with the
pointers annotated in the TDG to find out witch path was taken.

The best case latest possible start time (BCLPST) represents the latest
start time of a task on a machine with unlimited PEs and DMA controllers
under the assumption, that always the shortest control flow path is taken. The
BCLPST is annotated in time units relative to the thread deadline. If a task is
not able to meet its BCLPST, the corresponding thread is guaranteed to miss
its deadline, too.

The worst case latest possible start time (WCLPST) is similar to the
BCLPST but the longest control flow path is assumed for its calculation. Thus,
when a task meets this deadline, it is guaranteed, that all succeeding tasks are
also able to meet their deadline, too. However, if the WCLPST is missed, it is
still possible to meet the thread deadline if a more optimistic case than that
one assumed for WCLPST computation occurs. Therefore, we use the WCLPST
for dynamic prioritization in the RT-CoreManager and the BCLPST as the
cancellation criterion of a thread.
Loop information: When task calls are found in of loop bodies, special loop
nodes are generated. Loop nodes denote start or end of a loop body. They have
annotated their iteration count, the maximum execution time of the loop body
as well as the deadline for the final iteration.
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4.2 C++ Implementation

A thread is modeled by a class derived from RtThread_t. This base class has a
pure virtual function _Execute which must be implemented by the programmer.
_Execute contains the threads functionality. It must never be called directly from
user code but is invoked implicitly when the threads Start function is called.

The RtThread_t base class encapsulates implementation details such as the
threading model of the target operating system. Furthermore RtThread_t hides
the details of communication with the RT-CoreManager from the programmer.
Thus, user code does not need to contain any hardware or operating system
specific information. Execution of code on another operating system or a new
hardware with modified RT-CoreManager interface can easily be accomplished
by simply replacing the RtThread_t base class.

Tasks are functions with a number of pointer arguments. They may be static
class members or global non-member functions. Data is passed as pointer to its
global memory location. Tasks are declared in the same way as normal C/C++
functions, but the definition is enclosed in some pragmas. These pragmas de-
termine the entry point of the task and the processor types it may be executed
on.

Listing 1.1 gives an example of a very basic real-time thread containing two
task calls. For convenience the macros TASK, IN and OUT are available. TASK
encapsulates a complete task call. The first parameter is the task name to be
executed, the following parameters are the input and output data, which are
passed to the task using the IN and OUT macros. Their arguments determine
data location and the size of the data block.

Note that all extensions are implemented using standard C++ features, al-
lowing compilation of the applications with any C++ compiler. Therefore, the
program code can be used as reference as well as multi-core implementation
without any changes. This allows functional verification to take place without
any simulation runs on MPSoC simulators.

5 Compiler Tool Chain

For compilation, the C++ sources are passing a fully automated compiler tool
chain. The complete chain is depicted in Fig. 2. In the first step, task and control
code are separated by the TaskSplitter. Task code is compiled by the PE C/C++
compilers. The Thread Description Graph Compiler (TDGC) generates a C++
representation of the TDG for each thread in the application. The application
source code along with the TDGs is compiled with the HP compiler. Finally the
PE objects are linked as data blocks into the HP object code.

The TDG generated by the TDGC is fully annotated. Thus, no user modi-
fication is required. For TDGC implementation we extended the GCC source
code in order support the special features of our programming model. Graph
generation is performed in four successive steps. At first, control flow analysis
is performed, followed by memory alias analysis. From the results of the first
two steps, TDGC computes the BCLPST and WCLPST as well as all data
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dependencies and annotates them in the graph. Finally the graph is transformed
to reduce memory consumption.

During control flow analysis, a tree representation of the compiled thread is
generated. In order to remove back-edges, we add loop-start and loop-end-nodes
at the source and the destination of back-edges in the control flow graph. These
loop-nodes contain the loop information and are required to make the graph
acyclic.

// Task that can be executed on ASIP or DSP
#pragma TASK_BEGIN FFT // start task declaration
#pragma TASK_TARGET FFT-ASIP , 410 // target, execution time
#pragma TASK_TARGET StandardDSP , 2050 // target, execution time

// this is the task entry point
void FFT ( void *i1, void *i2, void *o ) {

// function implementation goes here , even sub-function are allowed ...
}

#pragma TASK_END // finish task declaration

// A very basic real -time thread class declaration
class MyThread_t :

public RtThread_t { // thread base -class

private :
void _Execute ( ); // thread entry point function

int _mode; // internal variables
int* _a, _b, _c; // internal variables
// further functions and variables ...

};

// Implementation of the thread functionality
void MyThread_t:: _Execute ( ) {

if ( _mode == 1 ) // if in the one mode , perform FFT ...
TASK ( FFT , IN ( _a, 1024 * sizeof ( int ) ),

IN ( _b, 512 * sizeof ( int ) ),
OUT( _c, 1024 * sizeof ( int ) ) );

else // ... otherwise perform IFFT
TASK ( IFFT , IN ( _a, 1024 * sizeof ( int ) ),

IN ( _b, 512 * sizeof ( int ) ),
OUT( _c, 1024 * sizeof ( int ) ) );

}

// main function implementation
int main ( ) {

MyThread_t instance1; // Create thread instances (but don’t execute )

// Start execution of the thread
instance1 . Start ( 4, 10000 ); // priority =4, deadline in 10000 cycles

// Start other threads here ...

return 0;
}

Listing 1.1. C++ Implementation of a Real-Time Thread (The base class is
RtThread t, the thread entry function is Execute)
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Fig. 2. The Compiler Tool Chain

During the memory alias analysis phase, task dependencies are analyzed. In
order to do that, the compiler searches each control flow path separately for
memory aliases [13]. A dependency is considered as present if at least one of the
following conditions holds (assuming task B is issued after task A):

– One or more outputs of task A are aliased with one or more inputs of task
B (read after write dependency).

– One or more outputs of task A are aliased with one or more outputs of task
B (write after write dependency).

– One or more inputs of task A are aliased with one or more output of task B
(write after read dependency).

If none of the above is true and the aliasing of inputs and output of two tasks
is uncertain, the dependency between two tasks is annotated as uncertain. If no
certain or uncertain dependency is found, two task are treated as independent.

The third compilation step computes the latest possible start times for each
task node. For LPST computation we assume unlimited availability of PEs and
DMA controllers. Network traffic is modeled according to the characteristics
of the interconnection network. An ”as late as possible” (ALAP) schedule is
computed for this kind of machine, providing the start times for each thread
in the TDG. The assumption of unlimited resources ensures, that the obtained
deadlines are suitable for architectures with arbitrary parallelism, thus making
the TDG only dependent on the kind of used PEs on an MPSoC but not on
their count.

The last step tries to reduce memory consumption of the graph by merging
nodes of equal tasks existing in different execution paths. In principle this could
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be done for any nodes of equal tasks in the graph but we have to take care that
BCLPST and WCLPST, do not diverge so much because of merging. In practice
a restriction has to be placed on merging which limits this divergence.

6 Results

At the current development stage, the compiler is able to cope with arbitrary
programs without loops. First tests on 802.11a WLAN C++ code resulted in
100% of correctly detected dependencies. Further tests with hand written test-
cases resulted in 10% of uncertain task dependencies.
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Fig. 3. Canceled tasks in an overloaded system

Figure 3 shows the cancellation rates of threads with different priorities which
are executed in a heavily overloaded system. As it can be seen, only low prior-
ity threads (higher priority numbers denote less priority) are canceled due to
the overload situation. The TDG for these threads has been generated with the
TDGC. Results have been obtained by simulation on a transaction level simu-
lator with 8 processors.

7 Conclusions and Future Work

In this paper we stated, that existing programming models and hardware archi-
tectures are not able to cope with future application requirements. We presented
an alternative approach solving the problem of task synchronization and reduc-
ing scheduling overhead caused by hardware/software interfacing. Furthermore
a real-time enabled programming model was suggested which makes concurrent
real-time programming quite straightforward. Our first experiments showed, that
a run-time scheduling is feasible under real-time constraints. Furthermore, it has
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been shown, that the compiler can deliver results of the quality required for an-
notation of reasonable real time constraints.

Currently data flow analysis within loops is under development for the TDGC.
Different real application benchmarks from the wireless communications and the
multimedia domain are under development in order to prove the applicability of
our approach to real time applications. Furthermore, we are aiming to allocate
and manage communication resources in order to improve predictability of data
transfer behavior.
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Abstract. In this paper we present a flexible performance estimation
tool calledNessie developed toprovide system-on-chip designerswith auto-
mated multi-objective design space exploration and its related tool called
Yeti building and executing reusable closed-formed models. After review-
ing the existing closed-formed expressions based and application/platform
mapping performance estimation tools, we propose an hybrid tool to cope
with their limitations. We present a brief summary of the functionalities
of Yeti and describe Nessie, our hierarchical application/platform perfor-
mance estimation mapping tool which banalizes all the degrees of freedom
for in-depth design space exploration and introduces multi-objective mod-
eling. Through this paper, we explain how the combination of these tools
provides the designer with innovative and powerful functionalities for per-
formance prediction at the earlier stages of the design flow.

1 Introduction and Context

What makes design of embedded systems (especially SoCs) highly challenging is
the fact that besides presenting a complex functionality, these systems have to
comply with ever more severe non-functional constraints in various dimensions
(power consumption, silicon area, cost, etc). Moreover, the SoC architectural
complexity (number of primitives) and heterogeneity (variety of primitives) in-
crease with time, which puts even more pressure on the design process.

To face this complexity, evolved design flows have emerged, that can be viewed
as a series of steps, each of these steps consisting in taking decisions about the
structure of the system, in order to move progressively from a pencil-and-paper
system description to the real device meeting the specifications. In this process,
multi-level abstraction both at software and hardware level is mandatory to limit
the number of degrees of freedom considered simultaneously and simplify the au-
tomated design tools task.

Design iterations, in which a decision taken previously at a higher abstraction
level has to be reconsidered when reaching lower abstraction levels (where im-
plementation costs are better known), are the enemy of designers and industry,
simply because they cost time. That’s why the development and use of models
allowing the designer to predict as early as possible in the design flow the impact
of a design decision on performances is crucial.
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Reconfigurable systems can be viewed as a target of choice for such an analy-
sis since reconfigurability can be defined as keeping, at runtime, some degrees of
freedom about the structure (hardware or software) of the system. Hence recon-
figurability is viewed here as the final steps, acting at runtime, of a more general
design process.

In this paper, we review different tools focusing on performance prediction
and discuss their current limitations in Sec.2. Based on this related work, we
present our own tools and explain the benefits that we could gain over classi-
cal solutions: Yeti is a closed-formed flexible modeling tool (Sec.3) and Nessie,
our second tool, enables platform/applicaiton hierarchical representation and
multi-objective performance estimation (Sec.4). Finally Sec.5 ends with some
conclusions and future work.

2 Related Work

Across the literature, the most common and wide-accepted definition of System-
level performance models is the following: ”System-level performance models can
be defined as first order models that attempt to capture the majority of relevant
system design issues in order to provide useful predictions or early feedback to
designers.”[1] How useful it can be to give the general idea about the models
involved in this activity, this definition has the main drawback of including a
too large part of the computer science related literature.

In the scope of this paper we define the system as the combination of an appli-
cation and a platform enabling its execution. To classify the different system-level
modeling tools that have been produced, we can separate them into two different
categories:

– Tools that explicitly describe the application and the platform in a structured
way to measure the performances resulting of their mapping. We will call
them HW/SW mapping performance estimation tools1.

– Tools that compute the performances by using compact closed-formed cap-
turing the information of both the application and the platform. We will call
the closed-formed based performances estimation tools.

2.1 HW/SW Mapping Performance Estimation Tools

In the past years many tools have been proposed both in the industrial and aca-
demic field to model the software/hardware interaction and its impact on per-
formances. Rather then reviewing them all in details, we chose the most relevant
and developed frameworks based on worthy and comparable criteria (Table1):
the SW/HW description language (SWD, HWD), the care for multi-objective
performance modeling (MO), the tool automatic exploration capabilities (AE),

1 In the rest of this paper, the application will be referred to as Software (SW) and
the platform as Hardware (HW) whatever the considered abstraction level.
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the possibility of building hierarchical modeling both for HW and SW (HM) and
the synthesis capability (Synth.).
Looking in this table we can notice a few interesting things:

1. Most of the reviewed tools often focus only on timing (latency, computation
time) while other aspects are somewhat left behind. Only Metropolis allows
the designer to model the different performance metrics he’s interested in.

2. Few of them offer automatic design space exploration and when it’s the case,
this exploration is only limited to the architecture (number of processors,
communication architecture etc.) and hidden inside the tool.

3. Many of them operate at the highest abstraction level of the design flow
but don’t offer the possibility to describe lower abstraction levels. This is
especially an issue when it comes to take into account technological related
parameters and measure their impact on performances.

Table 1. Table of the state-of-the-art HW/SW mapping performance tools

Tool SWD HWD MO AE HM Synth.

SESAME[2] KPN XML based No No Yes No

Koski[3] UML UML No Yes No No

Design trotter[4] HCDFG XMl based Yes Yes No No

Metropolis [5] meta-model meta-model Yes No Yes Yes

Cofluent[6] SystemC SystemC No Yes No Yes

Chinook[7] Verilog Verilog No No No No

2.2 Closed-Formed Based Performances Estimation Tools

A large part of the literature focuses on proposing closed-formed models tar-
geting fast modeling for the estimation of some performance variable whatever
the considered abstraction level. To cut down on the related state-of-the-art, we
only consider complete modeling systems that encompass models enabling high-
level variables performance estimation (throughput, instruction-per-cycle for a
microprocessor unit, total chip power consumption) based on low abstraction
level information (technology, CAD tool routing efficiency etc.).

Performance prediction tools of first generation were mainly focused on
clock cycle for (multi-)processor architectures (RIPE[8], SUSPENS[9], Codrescu
model[10]). Progressively they gained in functionality by introducing a modeling
hierarchy with GENESYS[11] and by enabling multiple-objective modeling with
BACPAC[12] (timing related metrics, power consumption, silicon area etc.).

The state-of-the-art tool named GTX[13] has been developed to provide the
user with a platform to incorporate existing models found throughout the liter-
ature with its own. This effort to avoid the redundant development of modeling
tools and to make previously hard-coded models explicit unfortunately never
got the success it deserved and its further implementation has been abandoned.
Furthermore some limitations prevent the user from using GTX as efficiently as
he should:
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– No scripting functionality is available; large campaign simulations where
successive models need to be built, loaded and executed for a given set of
inputs require the constant intervention of the user.

– GTX is a GUI-based tool; no interfacing with another tool is possible
– The underlying grammar to specify models is too permissive and lacks some

restrictions about the model specification and variable name uniqueness
verification.

– Input sensitivity analysis (which consists in studying the impact of the input
variations on the model output values) is supported at the expense of per-
forming numerous model evaluations while sweeping the input values around
their nominal values to measure the output variation.

2.3 Towards an Hybrid Tool for Performance Estimation

Comparing closed-formed based and HW/SW mapping performance estimation
tools , we can draw two interesting conclusions:
– While closed-formed based tools mostly focus on platform details (technol-

ogy node, interconnect, micro-archiecture parameters etc.), it does barely
care about application related parameters (degree of parallelism, instruction
mix etc.). On the contrary, HW/SW mapping tools describe in details the
application but don’t consider as much low-level technology information as
the previous type of tool does.

– Closed-formed based tools allow the designer to simultaneously take infor-
mation from all the design process abstraction levels and encompass them
into closed-formed relations while HW/SW mapping tools focus in details
on one abstraction level with precise information about both the platform
and application structure.

From the above statements, it is clear that an hybrid performance prediction
tool could combine the best of the two worlds by providing detailed and struc-
tured information about the HW/SW couple where accurate modeling is needed
combined with simplified closed-formed models to bridge the abstraction levels
gap. This paper addresses this issue by presenting two different tools of our own
whose combination precisely leads to that kind of hybrid tool:
– Yeti is a C++ library that allows the user to build and estimate models

extracted from a repository of models described in XML. It has powerful
scripting possibilities, offer special support for input sensitivity analysis and
can also work as a standalone tool if desired.

– Nessie is a framework enabling hierarchical description of the application and
its platform (again in XML). It provides multi-objective HW/SW mapping
performance estimation based on a customizable policy mapping algorithm.

3 Yeti

Yeti[14] is a flexible framework for the building and evaluation of closed-formed
based performance prediction models. It can either be used as a C++ library or
as a standalone tool. The functionalities of Yeti are the following:
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– Specification and reuse of models thanks to an XML schema based grammar.
Models are defined in XML files and can be chained2 to form larger and more
complex models.

– Output sensitivity study. In the case of closed-formed models, Yeti uses a
mechanism that enables fast model output sensitivity estimation based on
input value bounds. Closed-formed expressions are represented as trees com-
posed out of basic operations (addition, logarithm, division etc.); for each
of them, we can easily compute the bounds starting from the leaves of the
tree and then propagate the result to the top of the tree until we get the
output bounds. This method is a lot faster than sweeping the input values
to find the extrema since it only requires one sole closed-formed expression
evaluation.

– Model sensitivity study. Since models are read from XML files and built at
run-time, it is easy to swap a model for another and measure the impact on
the predicted output parameter. Furthermore this procedure can easily be
automated by the use of our XML based scripts.

– Evaluation and plot. Results are stored in an XML file that can be processed
by Yeti afterwards to extract the data to transmit them to a plotting program
(Matlab for instance).

More information and results about Yeti can be found in [14] where we com-
pared several interconnect models and successfully performed interconnect delay
sensitivity analysis to process variations.

4 Nessie

Nessie is a framework providing the user with flexible, multi-objective and hier-
archical representation of the application/platform couple. The purpose of this
tool is to extend the features and generality of the existing systems reviewed in
Sec.2.1 and offer an interface for automatic design space exploration.

4.1 Criteria and Degrees of Freedom

Before beginning to explore the design space, the designer has to determine two
different things: the criteria and the degrees of freedom (DoFs).

Criteria are measurable variables of the design quality that can be used to fairly
compare different design options (for instance silicon area, fault tolerance rating,
power consumption, execution time, heat density etc.). If each criteria of a solution
1 is better than the corresponding one of a solution 2, the latter solution will be
discarded and inversely. There is no restriction on the definition and number of
criteria; from one design to another, the constraints may be different so that it
makes no sense to fix a list of criteria. It’s up to the designer to:

2 Model chaining means that we use models output predictions to feed other model
inputs creating a tree structure of model.
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1. Choose the criteria3 and tell Nessie how they evolve over time and how to
compute them

2. Define the explicit constraints (i.e. a minimum and/or maximum value for
each criterion).

Degrees of freedom are the design variables that we have to fix during the
design flow implementation process: they include information about the applica-
tion, the material support and the mapping tools. Fixing all the DoFs leads to
one design solution: the complete set of solutions can be generated by combining
all the possible DoFs values.

4.2 Hierarchical Modeling

Nessie models both the platform and application in a hierarchical way. Each ab-
straction level is thus composed of different SW/HW primitives (called SW/HW
types) that can be instantiated at will to form a more complex SW/HW struc-
ture. Different SW/HW structures may be added to one single SW/HW type
so that it defines possible degrees of freedom for the SW/HW structures. This
mechanism allows the user to swap an algorithm for another at design-time or
choose from different SW implementations at run-time in the case of dynami-
cally reconfigurable systems (in the case of SW blocks), test different platform
topologies (HW blocks) but even more important to evaluate how well a partic-
ular application matches a certain platform.

Since we have defined a hierarchical structure, we need a flexible mechanism
to support the estimation of the criteria. Fig.1 illustrates the different possi-
bilities that we have when we want to compute the criteria resulting from the
execution of SWL,j on HWL,i

4:

1. To have a direct estimation of the criteria, we can use a Yeti model: each SW
block and HW block description therefore comes with a set of parameters
(defining new degrees of freedom) that are used as inputs for the Yeti model.

2. To get a more detailed estimation of the performances (at the expense of
a greater estimation time), we can explore the structure deeper. We move
on to the lower SW/HW abstraction level L + 1 using a mapping algorithm
that will perform the scheduling of the SWL+1 blocks and map them on the
HWL+1 blocks to compute the criteria. To obtain the criteria SWL+1,k and
HWL,m, we proceed recursively by using a Yeti model or exploring deeper
the hierarchy.

By combining Nessie and Yeti, we are thus able to provide the user with
different compromises between modeling accuracy and modeling estimation time.
As Nessie automatically performs exploration, the user can define an exploration
policy (explore as deep as possible, explore until abstraction level L etc.).

3 Time is the only mandatory criteria since it is needed for scheduling.
4 SWL,j is an instance of SW type j defined at abstraction level L.
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Fig. 1. Exploration of the HW/SW hierarchy for criteria estimation

4.3 Application Description

A software can be described in many different ways: depending on its charac-
teristics (control- or data-dominated, synchronous or not, sequential or parallel
etc.) there is likely one model of computation5 that will offer good support for
its description. Among all these MoC’s we have chosen to implement Petri Nets
since they are able to represent data and control dependency as well concurrency
and parallelism6.

Fig.2 illustrates a very simple example of Petri Net in the case of a basic oper-
ation a = b + c ∗ d. The petri network is composed out of places and transitions.
Places represent operations to perform: once a place is triggered, it generates a
token after a certain time (i.e. the time required for the operation to complete).
Transitions represent the conditions that need to fulfilled for the next place to
be triggered. If the required number of tokens is present in the places linked to
the transition incoming edges, the transition is valid, tokens are consumed and
a request is asked to the outgoing edges linked places to generate a token. We
can notice on the figure that tokens actually represent the data amount (in bits
in our case) that flows between the different places7.

4.4 Platform Description

Nessie represents the hardware using a netlist of HW blocks elements. It is
important to understand that not only computing units are part of the HW
5 The term Model of computation (or MoC ) has been introduced within the framework

Ptolemy[15]. It refers to executable models capturing the behaviour of an application
that can be classified in different categories[16] (state-oriented, activity-oriented,
data flow graphs, process-oriented etc.).

6 Our implementation is however sufficiently flexible to implement other MoC’s and
to make them automatically interoperate without any additional effort.

7 In the case of control flows, the data size associated to the token equals zero: no
data exchange need to be performed between the concerned places.
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Fig. 2. Petri Net representation for the a = b + c ∗ d operation

blocks: memory and interconnect also fall into that category and are explicitly
modeled.

Hardware blocks have several properties:

– Compatibility: since hardware can be seen as the material support for the
demands of the software, each HW block comes with a list of compatible
SW blocks of the same abstraction level. For instance a hardware multiplier
is only compatible with the multiply operation while an ALU will likely be
able to execute multiply, addition, shifting operations.

– Costs : Hardware blocks enable software execution at the expense of some
costs. Taking back our ALU/multiplier example, it is obvious that an ALU
pays the price for flexibility by consuming more power, occupying more sur-
face and being likely slower than a single hardware multiplier.

– State: The dynamic nature of HW blocks behaviour is represented by the use
of states: a HW block is either idle, in sleep mode to save energy, computing
(one of the compatible SW blocks), memorizing or transmitting data’s. To
switch from one state to another, we have implemented a transitional time
table that takes into account any possible dead time that the HW block may
experience (for example a microprocessor recovering from sleeping mode).

To exchange data, HW blocks instantiate one or more communication ports
connected through logical links8. Fig.3 illustrates two examples of HW struc-
tures. The left part of the figure shows two computing nodes connected by a
shared interconnect medium to a memory while the right part shows a 4-tile
regular mesh with its interconnect network.

Our HW structure representation provides an ideal support for reconfigurable
platforms: we are able to represent the effects of a platform run-time reconfig-
uration by changing the costs, the SW compatibility list (since the new block
probably supports other operations) and by adding a reconfiguration state to
account for the reconfiguration time overhead.
8 Logical must not be mistaken for interconnect: contrarily to the latter, they don’t add

any cost and are used to connect any block whatever its type (memory, computation
or interconnect).



A Multi-objective and Hierarchical Exploration Tool 93

Comp 1

Int 1 Mem 1

Comp 2

Comp 1

Comp 3

Int 4

Int 1

Int 2

Int 3

Comp 2

Comp 4

a) b)

Communication port :

Logical link :

Fig. 3. Examples of HW structures: a) two computing nodes connected by a shared
interconnect medium to a memory and b) 4-tile regular mesh with its interconnect
network

4.5 Mapping

Now that we have defined general structures for the representation of software
and hardware, we have to evaluate the criteria that will result from their map-
ping. We have define an algorithm that combines allocation, scheduling and
routing while preserving a high level of generality. The main steps are the
following:

– priority scheduling: the SW block with the highest priority is selected among
a ready-to-execute SW queue. The priority is defined by a sum of several
variables (the time that the SW block spent waiting in the ready-to-execute
queue, the number of dependent SW blocks that will be triggered after cur-
rent SW block execution etc.) and is part of the mapping algorithm degrees
of freedom9.

– routing/allocation: among the compatible HW types, we select the one with
the smallest global routing cost reaching it starting from the HW blocks
producing the required data to consume (using a Dijkstra routing algorithm).
Again the routing cost calculation is a degree of freedom (it can include
information about power consumption, timing, network congestion etc.).

4.6 Example: Communication Network Optimization

To illustrate Nessie functionalities, we have chosen an example focusing on the
optimization of communication networks where we try to evaluate the impact of
the communication network choice on performances and show its dependence with
the application. From a simple shared bus to networks-on-chips, there are many
different available choices for interconnect: while the first has the advantage of
being very simple and easy to set up, it offers no communication parallelism at
9 The priority is computed using a Yeti model so that we can easily change it at

run-time.
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all between the different interconnected processing nodes. Networks-on-chips, on
the contrary, require more silicon area (multiple wires, routers, network interfaces
and so on) but provide the platform with flexible and parallel communication ca-
pabilities. Furthermore the choice of the network highly relies on the application:
small tasks exchanging numerous information will take advantage of more parallel
communication networks than a few computation-centric tasks would do.

Nessie is therefore able to represent the interaction between the communi-
cation network and the application and compare the performances for different
performance criteria defined by the user (total execution time, power consump-
tion, silicon area, etc.). Therefore we define different architectural choices (HW
structures) and different applications descriptions (SW structures) as input and
let Nessie explore the different solutions using a fixed allocation/schaduling pol-
icy: this results for each possible combination in the performance criteria and
allows the designer to choose the best combination.

5 Conclusions and Future Work

Through this paper we have presented how our tools can help the user to capture
all the relevant aspects of the chip he has to design. Thanks to our definition of
criteria enabling multi-objective optimization, design space exploration can be
performed based on all the defined degrees of freedom (HW/SW structure, algo-
rithm weights and costs functions, HW/SW parameters and exploration policy).
With such an interface of criteria/degrees of freedom, it is easy to apply more
clever exploration methods like metaheuristics that we plan to integrate on top
of the Nessie framework. Currently Nessie is in final stages of implementation
and we plan to demonstrate very soon its capabilities on some basic HW/SW
examples. In the long term, we will try to use Nessie and Yeti on real design
flows to evaluate its benefits over classical design methods.
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Abstract. Multi-Processor Systems-on-Chip (MPSoCs) are the most
recent challenge of the VLSI technologies and Networks on Chip repre-
sent a high performance alternative to the traditional bus architectures.
In this paper, a novel approach to the design of a dual-mode router,
based on the idea of supporting both circuit and packet switching in a
non-exclusive way, is presented and evaluated. This feature makes the
proposed architecture suitable for MPSoCs which have to deal with het-
erogeneous traffic characteristics especially in terms of data size, such
as the Massively Parallel Processors. Non-exclusivity enables packets la-
tency reduction, which in turn implies lower task completion times, and
also it increases throughput.

Keywords: Networks on Chip, Dual-mode switching, Non-exclusive
switching, Circuit switching.

1 Introduction

Nowadays it is a widely shared opinion that Multi-Processor Systems on Chip
(MPSoCs) are the most recent challenge of VLSI technologies. Due to the in-
creased on-die integration capacity, system complexity can be considered one
of the two main hot topics dealing with MPSoCs. The other one is instead re-
lated to the wiring issues in the high gate count designs [1]. A feasible solution
for both problems seems to be provided by tile-based architectures. These ar-
chitectures are composed of several elements, namely the tiles, all identical and
formed by Intellectual Properties (IPs). Typically in the tile-based architectures,
interconnection networks replace ad-hoc global wiring structures.

Complexity does not mean only integration density but also an efficient sup-
port for complex applications, which could require heavy concurrency to be
handled and wide thread parallelism to be exploited [1]. A very promising so-
lution to withstand this kind of applications is provided by Massively Parallel
Processors (MPPs). MPPs are tiled architectures composed of a large number
of processors regularly interconnected to form a multiprocessor environment on
a single chip [2]. The interconnection medium for MPSoCs and, even more, for
MPPs is a non-trivial design concern: large bandwidth and efficient support for
the parallelism have to be enabled. Traditional interconnection networks such
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as busses, even if small are not capable of providing parallel access to the in-
terconnected resources, present poor scalability and wiring optimization. All the
limitations experienced by busses are points of strength of the Networks on Chip
(NoCs), widely used for this reason in MPSoCs and MPPs design [3].

In this paper, a novel NoC architecture including all the abovementioned fea-
tures but also flexible in terms of traffic to be supported is presented and evalu-
ated. The possibility of providing guaranteed throughput service and best effort
service together, at the price of having a router which embeds two crossbars, has
been explored. Motivations reside mainly in the fact that, in real applications,
continuous and discontinuous traffic coexist. Moreover particular applications
are very likely to run different threads in parallel on different tiles, but with the
need of exchanging scalar data vectors or even threads, which are intrinsically
very different.

The rest of the paper is dedicated to a brief panoramic of the state of the art
of related topics (Section 2), to point out the architectural issues this approach
wants to address (Section 3), to a detailed description of the implemented solu-
tion (Section 4) and its validation (Section 5) and finally, in Section 6, conclusions
and future works are presented.

2 Related Works

There are many different ways to classify a NoC. From the point of view of
the kind of switching it is possible to highlight two categories: packed switched
networks and circuit switched networks [4].

The circuit switching technique is the method by which a dedicated path, or
circuit, is established prior the sending of the sensitive data. This characteristic
makes circuit switched networks suitable for guaranteed throughput applications,
especially in case of real time communications.

In packet switching methodologies the intermediate routers are responsible
for routing the individual packets through the network, neither following a pre-
defined nor a reserved path. Since this technique does not require reserving any
resource in advance, it is suitable for best-effort services or for soft-timing con-
strained communications.

In this scenario, some NoC architectures claim to be dual-mode, being able to
support both types of switching. The benefits of these hybrid networks consist
in a better usage of the available bandwidth and the increasing of the overall
throughput, at the price of a more complex hardware implementation.

This issue has been firstly addressed by Shin at al. [5]: combining two differ-
ent types of packet switching (virtual cut-through and wormhole routing) they
were able to guarantee a higher throughput (with respect to pure wormhole) and
to reduce buffering demand (with respect to pure virtual cut-through). Philips
Research Lab [6,7] pushed these improvements even further, implementing a
dual-mode switch which provides both guaranteed and best-effort services. Sim-
ilar results have been obtained also by Hsu et al. [8] and by Ahmad et. al [9].
The abovementioned works [6,7,8,9] mainly differ on the type of implementation
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and supported application (e.g. the architecture of Hsu et al. is conceived for
AMBA-based IPs).

The novelty of the presented approach mainly resides in the possibility of
having circuit switching and packet switching in parallel and contemporary.

3 Architectural Requirements

MPP architectures are conceived to efficiently implement the Thread Level Par-
allelism (TLP), a common characteristic of the MPSoCs. Each IP in an MPP
has to execute a particular instructions flow, known as thread, in a completely
self-sufficient manner and to be able to communicate with other IPs, in order
to exchange data shared among different threads. The demand of parallelism re-
quired by MPPs and MPSoCs implies the design of an efficient communication
layer able to sustain it. This means that the interconnection medium has to be
scalable, to allow multiple accesses of the different IPs to the shared resources
and to be optimized in terms of wiring.

The choice of a particular interconnection structure, among all the available
ones in literature, is highly dependent on the type of traffic to be routed. In
MPSoCs, such as the MPPs, it is necessary to provide a quick resolution of the
interdependencies among different threads, single scalar data or even vectors,
which are responsible for the suspension of a thread from its execution, thus
delaying its completion time. Moreover, in MPP architectures, load balancing
techniques to avoid hot spots and to efficiently exploit all the IPs available on-
chip are usually required. Threads migrations between IPs generates a regular
and continuous traffic, made up of long streams of data. Thus long streams of
data, vectors and single data have to be efficiently served.

4 Proposed Dual-Mode Router Micro-architecture

In this paper a novel NoC architecture able to combine the benefits of the circuit
switching and the packet switching techniques is proposed. The key idea is to
make them feasible at the same time, avoiding packet switching communications
stalls for long time intervals due to circuit switched communications. This allows
to solve data interdependencies quickly, which otherwise could stay un-solved for
all the time necessary to migrate a task [7,9]. The price to pay is to split a wider
link such as a 32 bit one, into two different parallel links (16+18 bits) driven by
two different crossbars.

This novel architecture is also able to provide all the typical services a NoC
has to guarantee [10]: data integrity, deadlock free communications, lossless data
delivery, in-order data delivery, throughput and latency. Deadlock free commu-
nications are ensured by the adoption of a fair arbitration scheme in case of
contentions and of the X-Y routing scheme (deadlock free by construction).
Lossless data delivery and in-order data delivery are guaranteed by the control
flow (credit-based) and the switching (wormhole) implemented policies. Finally,
throughput and latency depend merely on the transaction to be initiated: circuit
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switching or packet switching is appropriately selected at the transport layer, in
an ISO-OSI like description [3] of the NoC.

A generic NoC architecture is composed by several different instances of three
elements: the link, the Network Interface (NI) and the router. Links, from our
point of view, are simple wires which connect each NI with an IP on one side
and with a router on the other, and also routers among themselves. NIs are re-
sponsible to translate the end-to-end communication protocol into the network
protocol and vice versa, moreover in this particular architecture NIs are responsi-
ble to set up the appropriate kind of transaction to be initiated (circuit/packet).
Nevertheless, due to the fact that this paper is mainly related to the NoC itself,
a description of the internal details of the NI is meaningless, because too much
related to the IP which is connected to.

4.1 Dual-Mode Router

A key feature of the proposed router architecture is that packet switching and
circuit switching are not implemented in an exclusive fashion, such as all the
other routers in literature [6,7,8,9]. The general view of a typical packet switch-
ing router [4] has been enriched by the presence of a circuit handling section, thus
the upper part of the block diagram in Figure 1 is hereafter named Packet Han-
dling (PH) section and the lower one Circuit Handling (CH) section. This fact
does not mean that each router is composed of two separated couples of datapath
and control path serving separately packets and circuits. The two aforementioned
sections cooperate and exchange control signals in order to allow the establish-
ment of the circuits and the packets flow (PH section) and the communication
over the reserved circuits (CH section).

Keeping in mind that this architecture has been designed to be suitable for
MPSoCs and MPPs, we have decided to adopt a 2-D mesh topology, mainly for
two reasons: normally MPPs are organized in grid structures and moreover a 2-D
mesh is easily traceable on a 2-D layout. Each node of our network is connected
with 4 neighbours and with one NI.

The PH section is standard [4], with respect to packets management. Packets
are routed according to the wormhole switching technique and the flits are stored,
along the path to destination, into output buffers. Input buffering has not been
implemented, even though each incoming flit is stored in a register prior to be
sent to the proper virtual output channel, in order to avoid any loss in case of
congested FIFO. Moreover, in order to provide two levels of priorities, the output
channels are organized into two different virtual output channels multiplexed on
the same physical output link. Priorities are assigned by the source NI and reside
in the header flit of each packet, together with all other control information.
Packets with priority 0 are used to set up a circuit, whereas priority 1 is meant
for sending single data. The implemented control flow technique is credit based
and if more than one input channel ask for the same virtual output channel,
contentions are solved in a round robin fashion.

The only difference with respect to a standard packet switched router re-
sides in the control of the input channel when a set up packet for the circuit
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Fig. 1. High-level router architectural overview. Shaded area represents the structure
of the Circuit Handling (CH) Section, brighter one the Packet Handling (PH) Section.

is received. A first level of adaptability has been introduced in the system by
allowing to change the X-Y routing scheme into Y-X (and vice versa if neces-
sary), if the originally requested output link in the CH section has been already
reserved for another circuit (either is just reserved or already in use). Each input
channel exchanges control signals with the shared crossbar control logic in the
CH section, to check if the requested link can be reserved or not. If not, it tries
the complementary routing scheme and, if even in this case the link is already
booked, the set up packet will be turned in a nack packet and sent back to
the source. This mechanism does not lead to any form of deadlock because the
module responsible to select the proper virtual output channel, placed in each
input channel, does not allow a set up packet to be routed back to the source.
It simply compares the destination coordinates, stored in the header of the set
up packet, with respect to the local coordinates of the intermediate routers the
packet has reached: switching from X-Y to Y-X is allowed only if the link on
the X direction has already been reserved and if at the same time, following
the Y direction, the distance beetween the local and the destination tiles will
be reduced (defininig the distance as |Xdest − Xloc| − |Y dest − Y loc| ).
Obviously the dual case is also admitted. The worst case that can appear is that
from source to destination the routing scheme has to switch from X-Y to Y-X
(and vice versa) at each intermediate router due to traffic congestion leading to
a stepwise reserved path for the circuit.

The CH section has its own 18 bits crossbar: 16 for the data, 1 validity bit
and 1 release bit (to manage the tear down of the circuit). In the dual-mode
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exclusive routers in literature, circuit switching has been handled mainly using
time division multiplexing [7,9], but those solutions imply to exploit recording
tables [8], slot tables [6], or routing tables [9]. In order to save area, we decided
to get rid of any sort of table adopting a simple shared 5 bits register, accessible
by all the input channels that need to check for the availability of a certain
output port of the CH section, with a round robin based arbitration in order to
avoid collisions and write hazards. This register is initialized to zero by default.
It is synchronously written and asynchronously read. When an input channel
receives a set up packet and evaluates which output link has to be reserved, the
correspondent bit of the register is accessed. If the link is already reserved, the
evaluated bit will be found to be one and the input channel requesting it can not
be served. If the link is free, it means that the correspondent bit of the register
is zero, the input channel can reserve it and the bit is turned to one. At the end
of the communication over the established circuit, the source NI raises a release
signal which follows blindly the circuit and is used to tear it down by switching
back to zero the proper bit in the shared 5 bits register.

When a set up packet cannot go further, due to the fact that both the link
in the X-Y and the one in the Y-X directions are already reserved, the control
logic of the input channel turns the set up packet in a nack packet and sends it
back to the source NI. The source NI is responsible to retry the sending.

5 Performance Exploration

The testing environment, shown in Figure 2, has been implemented in SystemC
at Register Transfer Level (RTL) to allow cycle accurate simulations. SystemC
is a C++ library that, compared to the other HDLs, is less effective for the auto-
matic synthesis but is more expressive in terms of high level debugging features.
Moreover SystemC is suitable in the perspective of performing hardware-software
co-design, a typical step of MPSoC development [1].

An 8x8 2-D mesh has been explored. Each node of the mesh represents a Tile
and is connected to a Traffic Generator and to all the neighbouring Tiles. Each
Tile embeds the NoC building blocks (NI and router), a DMA and two memories.
Traffic injection [11] into the network is governed by 3 different distributions,
namely Gaussian (G), uniform (U) and Poisson (P). Moreover it has been de-
cided that 10% of the initiated transaction ask for communication over circuit,
whether the rest are simple data that can traverse the NoC over the PH sec-
tion. Transaction length is obviously fixed for single data transactions (32 bits),
whereas the length of the communication over circuit varies between 50 and 500
32 bits data according to a uniform distribution. All of the above mentioned traf-
fic characteristics are mainly temporal and define the degree of regularity and
burstiness of the transactions. In addition the traffic has been characterized also
from a spatial point of view. 7 different tasks are going to be executed on the tiles
on different sub-mesh sections, known as clusters, in a non-overlapping fashion.
Each cluster is composed of a number of nodes correspondent to the number
of threads constituting the associated task; the number of threads per task is
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NTh = (8, 5, 6, 14, 10, 8). Threads allocation on the grid has been performed ac-
cording to three different allocation strategies: a non contiguous scheme, known
as Leapfrog Allocation Algorithm (L) [12]; a contiguous scheme, known as Mul-
tiple Buddy Strategy Algorithm (B) [13], which reserves rectangular areas even
if not all the allocated tiles will be actually used, and finally a custom nature-
inspired contiguous algorithm (C) which actually exploits all the allocated tiles
[14]. The total number of transactions on the network is approximately 5000,
meaning that on average each node initiates 79 communications.
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Fig. 2. View of the 2-D mesh, focusing on the single tile building blocks

Combining together the three distributions with the three allocation schemes,
9 different traffic characteristics have been generated, which are summarized in
Table 1. Moreover, as Table 1 shows, the proposed approach has been compared
with an exclusive state of the art-like architecture [6,7,8,9].

Table 1. Injected traffic specifications

Architecture Exclusive Dual-Mode Non-Exclusive Dual-Mode
Traffic Injection {G,U,P} {G,U,P}

Allocation Scheme {B,L,C} {B,L,C}
Number of 32 bits 1 (PS) 1 (PS)

transactions 50-500 (CS) 50-500 (CS)

Combinations 9 9

5.1 Simulations Results

The main objective of an interconnection network is to deliver all the data from
source to destination without any loss and as quickly as possible, to reduce
the overall task completion time. According with this assumption the Latency
relative to packets delivery, i.e. the time spent by each packet along the path
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linking source and destination tiles, has been evaluated. In order to minimize
task completion time, which is the key requirement in a multithreaded envi-
ronment from the side of the interconnection network, latency should be mini-
mized. For this reason the first step in the validation process is to demonstrate
that non-exclusivity is able to guarantee better results in terms of latency com-
pared to exclusive solutions. Table 2 summarizes the obtained results for the
aforementioned configurations of clusters and traffic. Table 2 highlights how the
non-exclusive approach is able to guarantee lower average latency values, while
exclusive architecture performs on average from 2 to 5 times worst. Since in the
exclusive model packets latency is highly affected by the contemporary presence
of a circuit on the same link, standard deviations and maximum values are no-
ticeably higher than the non-exclusive case, even though the minimum values
are quite similar, behaving the two architectures in the same way in absence of
established circuits. Latencies also depend on the kind of arrival time statisti-
cal distributions: in fact in uniform traffic configurations the difference between
exclusive and non-exclusive cases is definitely lower compared to the Poisson dis-
tribution configuration. The reason resides in the fact that Poisson distribution
implies a higher probability of having injected packets and established circuits
in smaller time intervals, hence generating longer stalls of packets inside queues.

Table 2. Latency evaluation for both exclusive and non-exclusive architectures: average
values (Avg), standard deviations (Std), maximum and minimum values (Max and
Min) and statistical median (Med). All the data are expressed in clock ticks.

Avg Std Max Min Med
Excl. N-Ex. Excl. N-Ex. Excl. N-Ex. Excl. N-Ex. Excl. N-Ex.

BU 48.4 21.1 67.5 6.4 511.0 60.0 11.6 12.0 25.0 19.0

LU 55.3 20.1 98.2 6.9 848.0 75.0 11.6 11.4 22.5 18.0

CU 61.6 21.6 103.4 7.6 751.0 93.0 11.8 11.8 26.0 19.0

BG 96.9 22.8 155.2 9.5 1339.0 152.0 12.1 12.0 29.0 19.5

LG 69.6 21.0 108.3 10.0 1004.0 228 11.5 11.5 27.0 18.0

CG 83.5 22.3 137.8 9.0 987.0 179.0 12.0 11.8 26.0 19.5

BP 119.6 25.1 252.1 14.1 2540.0 200.0 12.0 12.0 36.5 21.0

LP 101.1 23.3 144.0 13.1 917.0 301.0 11.5 11.4 33.0 19.5

CP 101.0 23.5 137.2 10.1 1040.0 137.0 11.8 11.8 30.0 20.0

Figure 3 depicts an example of latencies distribution in both the exclusive
and non-exclusive cases, with regard to the Leapfrog allocation algorithm with a
Poisson traffic distribution. It is clear that latency values for the exclusive case
(on the left) are more spread compared to those of the non exclusive one (on
the right). This affects the average value and even more the standard deviation.
The median is not so affected as the other two metrics since the population has
a considerably high peak for low latency values in both cases. The distribution
of the latency values in the exclusive case does not show any gap but reaches its
maximum in a continuous way: this is likely due to the fact that the more the
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Fig. 3. Latencies histograms for the exclusive (left side) and not-exclusive (right side)
architectures, with Poisson traffic distribution and Leapfrog Allocation Algorithm

circuits overlap in time the more is the congestion of the NoC, so that packets
have to wait more time on intermediate queues.

6 Conclusions

In this paper, a novel non-exclusive dual-mode interconnection network has been
proposed and the achieved simulation results in terms of latency values have been
deeply investigated. The proposed approach has been motivated by the key idea
that in a multithreaded environment, such as the one supported by MPPs, it is
very likely to have the coexistence of different traffic characteristics. An efficient
support for tasks migration, generating regular and long continuous streams of
data, has to be efficiently served along with data interdependencies exchanges
(vectors or scalar data). A non-exclusive approach is able to guarantee that on
average, no matter of the injected traffic, the latency is always lower that the
achievable one with an exclusive solution. The next step in this research work is
to deal with other common metrics in the NoC field, such as the congestion of
the network and the link workload. Nevertheless congestion is strongly related
with latency, because the more is the latency of a packet the more is the time
spent by that packet inside queues. The link workload will be meaningful instead
to highlight the possibility of better usage of the bandwidth to solve data inter-
dependencies among tasks more quickly, and is correlated to the latency because
better workload exploitation can provide smaller latencies.
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Abstract. Hardware implementations of block ciphers have been inten-
sively evaluated for years. The hardware profile, including the perfor-
mance, area and power of a block cipher, only considers the block cipher
as a standalone component, and does not consider it as a coprocessor in
a system design. In this paper we consider system integration of AES
and PRESENT crypto coprocessors, and analyze the system profile in a
co-simulation environment and then on an actual FPGA-based SoC plat-
form. Energy, performance and implementation results for both the AES-
and PRESENT-based systems are presented. Our research emphasizes
the need to consider energy efficiency and performance at system-level
when evaluating a block cipher for real embedded systems. Simulation re-
sults reveal that the hardware/software interfaces, as the communication
bottleneck, have major impact on the system performance. Experimental
results further demonstrate that the PRESENT, a power-efficient light-
weight block cipher with lower security level, becomes less energy-efficient
than AES when system-integration overhead is included.

1 Introduction

In recent years, Field Programmable Logic Arrays (FPGAs) have had major
impact on hardware/software codesign. Compared to the early frequent use as
devices for rapid prototyping, FPGAs are now used for final products, thanks to
their reduced time-to-market and the cost advantages of standard devices. Due
to the importance of reconfigurable devices, numerous FPGA AES implementa-
tions have been published, most of which focus on high throughput rates [1, 2].
In [3], an AES design achieves a throughput of 25 Gb/s on a Xilinx Spartan-3
FPGA. This number only reflects the raw processing ability of the hardware
to encrypt bits. However, FPGAs are now becoming a preferred platform for
System-on-Chip (SoC). By providing hard and soft embedded processors on
FPGAs, they enable on-chip integration of co-processors and processors. If we
re-examine the above high throughput designs in the context of a SoC system,
the communication bandwidth between system components becomes a critical
design factor. Fox example, If we only consider an AES coprocessor that runs
at 100 MHz and requires 11 clock cycles per encryption round, each round re-
quires a 128-bit key, 128-bit plaintext and 128-bit cryptotext, then we need an
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input/output bandwidth of about 3.5Gb/s. Dedicated communication hardware
(e.g. direct-memory-access (DMA) chips on fixed-latency buses) may achieve
this bandwidth. In many cases however, this bandwidth needs to be provided
directly through the software. The bandwidth of 3.5Gb/s indeed is outside the
capability of most embedded processors [4].

This shows the most optimal hardware design (in terms of performance) may
not always be the most optimal solution at system level. In fact, not only the
performance, but also the power or energy efficiency should be re-considered at
system-level. In this paper, we consider AES and PRESENT for hardware accel-
eration, and using hardware/software interfaces provided with StrongARM and
Microblaze processors. The results for StrongARM are estimated using cosim-
ulation [5]. The results for Microblaze have been implemented on an FPGA
board and measured using a hardware timer. In addition, power estimation was
performed at system level using Xilinx XPower.

The contribution of this article is two-fold: (1) to present a system-level de-
sign flow, covering simulation up to FPGA implementation, that evaluates the
performance and power consumption of a crypto coprocessor integrated in a
complete system; (2) to point out that a lightweight and power-efficient cipher
(PRESENT) integrated in a SoC environment may actually be less energy-
efficient than a standard block cipher (AES).

The paper is organized as follows. Section 2 briefly presents the background of
PRESENT block cipher. Section 3 explains the system-level design flow used in
the paper and performs some analysis on the performance and power consump-
tion under co-simulation environment. Section 4 describes the FPGA-based SoC
design and illustrates the experimental results. Section 5 concludes the paper.

2 PRESENT Block Cipher

Although Rijndael has been selected by the American National Institute of Stan-
dards and Technology (NIST) as the Advanced Encryption Standard (AES) af-
ter a critical assessment, which included extensive benchmarking on a variety
of platforms ranging from smart cards [6] to high end parallel machines [7], still
many new block ciphers were proposed with special implementation properties,
such as TEA, IDEA, Hight, Clefia, DESXL, and PRESENT [8]. In this paper,
we are especially interested in comparing the AES with the newly published
PRESENT block cipher, which was designed with area and power constraints
uppermost in mind.

PRESENT is an SPN-based (substitution permutation network) block cipher
with 31 rounds, a block size of 64-bit, and a key size of 80- or 128-bit. Fig. 1 shows
the top level algorithmic description and hardware structure of PRESENT. It
comprises three stages: a key-mixing step, a substitution layer, and a permuta-
tion layer. For the key mixing, simply a XOR is used. The key schedule consists
essentially of a 61-bit rotation together with an S-box and a round counter
(Present-80 uses a single Sbox, whereas Present-128 requires two S-boxes). The
substitution layer comprises 16 S-boxes with 4-bit inputs and 4-bit outputs.
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Similar S-boxes are used in both the data path and the key scheduling. The
permutation layer is a simple bit transposition and can be realized by simple
wiring [9].
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for i = 1 to 31 do

addRoundKey (state, Ki)
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pLayer (state)

end for
addRoundKey (state, K32)

Fig. 1. Algorithmic description and hardware structure of PRESENT-80

3 System-Level Design and Analysis Using GEZEL

In order to narrow the gap between performance and flexibility, reduce the time
required to complete a design and reduce the risk of errors that might result from
translating a high-level prototype (e.g. C model) into HDLs, we use GEZEL to
perform system-level design.

Code 
Generator
fdlvhd

Standalone 
Simulator
fdlsim

Cosimulator
gplatform

GEZEL
Language

Synthesis
Verfication
Hardware Profiling
Stimuli Generation

Verfication
Hardware Profiling
Stimuli Generation

Library-block Extensions (C++)
Primitive Elements
Cosimulation Interfaces
Platform-specific Synthesis Interfaces

* . fdl

Built-in Simulator
Dalton 8051
Picoblaze
Simit-ARM

External Simulator
SystemC
Java
Avrora

Fig. 2. Overview of GEZEL cosimulation environment

The GEZEL cosimulation environment creates a platform simulator by com-
bining a hardware simulation kernel with one or more instruction-set simulators.
The hardware part of the platform is programmed in GEZEL, a deterministic,
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cycle-true and implementation-oriented hardware description language. After
cycle-accurate simulation, the GEZEL description of hardware can be converted
into synthesizable VHDL [10].

3.1 Hardware/Software Interfaces

There are three commonly available hardware/software interfaces: direct connec-
tion busses (e.g. Fast Simplex Link), processor local busses and general-purpose
system busses (e.g. On-chip Peripheral Bus). Direct-connection buses and proces-
sor local busses are processor specific, while system busses are generic. In this
research, we will only discuss the design using OPB system bus.

The OPB interface is a traditional memory-mapped interface for peripheral
components. The OPB bus is a shared, variable latency bus which is part of IBM’s
CoreConnect specification. It is also used to interconnect soft- and hard-core
processors in a Xilinx FPGA. The hardware side of an OPB interface consists of
a decoder for a memory-read or memory-write cycle on a selected address in the
memory range mapped to the OPB. The decoded memory cycle is translated to a
read-from or a write-into a register in the coprocessor. A memory-mapped inter-
face is an easy and popular interface technique, in particular because it works with
standard C on any core that has a system bus. The drawback of this interface is the
low-speed connection between hardware and software. Even on an embedded core,
a simple round-trip communication between software and hardware can run into
several tens of CPU clock cycles [4].

Processor

Memory 
Controller

Memory 

Bridge

Peripherals

Custom HW

OPB

Software 
…
volatile unsigned *regid = (volatile unsigned *) 0x80000000;
volatile unsigned *opid  = (volatile unsigned *) 0x80000004;
volatile unsigned *data  = (volatile unsigned *) 0x8000000C;
...
Hardware
...
ipblock regipif(...) {

iptype "xilinx_ipif_reg";
ipparm "core=myarm";
ipparm "regid=0x80000000";
ipparm "opid =0x80000004";
ipparm "data =0x8000000C";

}
...

Fig. 3. Hardware/Software interface OPB

3.2 Cosimulation Based on StrongARM

Under the GEZEL simulation environment we first implement the AES and
PRESENT in GEZEL based on based on Finite State Machine with Datapath
(FSMD) model. A standalone simulation is then used to verify the correctness
of the AES and PRESENT encryption core. Next, the AES and PRESENT
cores are integrated into a coprocessor shell as follows. Three memory-mapped
registers have been added: a data-input port, a data-output port, and control
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port. Since the maximum data width supported by the OPB bus is 32-bit and
the AES-128 and PRESENT-80 used in this paper have 128-bit, 80-bit and
64-bit ports, additional registers should be added to perform serial-to-parallel
and parallel-to-serial conversions. The control shell also contains a dedicated
controller that controls the operations of the hardware/software interface, which
is OPB interface in our design. This controller implements the ’instruction-set’
for the coprocessor, and decodes the commands sent from the software driver to
the coprocessor. The final step is to write a software driver to perform a series
of memory reads and writes.

Block cipher
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done rst ld

128(80)

128(64)
128(64)

Cryptotext Key

Plaintext

Decoder instructions
(0x80000000)

data_in
(0x80000008)

data_out
(0x80000004)

Software 
Driver

Embedded
Processor 

Core

Addr

Data

FMSD model Interface Instruction-set Simulator

Fig. 4. Cosimulation based on instruction-set simulators

The simulation results for the AES and PRESENT under GEZEL environ-
ment are illustrated in Table 1.

Table 1. Cosimulation performance results (100 encryptions for each block cipher)

SW HW HW/SW HW HW/SW

cycle counts cycle counts cycle counts speedup speedup

AES-128 217,603 1,200 134,599 181.3 1.6
PRESENT-80 1,924,547 3,300 85,306 583.2 22.6

Note that the AES-128 hardware implementation is based on the core devel-
oped by Rudolf Usselman, available from OpenCores, and the software version
is a 32-bit AES derived from the SSH open source package; the PRESENT-80
hardware design is based on the structure depicted in Fig. 1, and the software
version was provided by one of the PRESENT authors. Both the hardware and
software versions are basic implementations without specific optimization goals,
and here the designs consider the encryption only with each plaintext assigned an
initial key. 100 iterations for the AES and PRESENT algorithms (which trans-
mit the plaintext and key to the cipher for each iteration) result in the above
performance numbers.
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Table 2. Toggle counts (TC) of standalone simulation

TC/cycle TC/encryption TC/(encryption ∗ byte)

AES-128 3,798 45,576 2,849
PRESENT-80 2,746 90,618 11,327

From Table 1, it is obvious that if we only consider the hardware acceleration
the design speedup is often dramatic, but, if we consider the system integration
and take into account the communication overhead, the resulting speedup can
be much lower.

The GEZEL simulation environment also provides technology-independent
toggle counting at Register Transfer Level (RTL), which is useful to roughly
estimate the dynamic power consumption of a design.

The toggle counts collected in Table 2 only includes the AES and PRESENT
encryption core when doing standalone simulation. This data can be utilized to
early estimate the power- and energy-efficiency of the hardware designs of AES
and PRESENT. The first column of the table indicates that PRESENT-80 is
more power efficient than AES, in terms of dynamic power consumption. How-
ever, since most light-weight block ciphers, like PRESENT, are specialized cryp-
tographic implementations for tight cost constraint applications, such as RFID
tags, the energy-efficiency instead of power-efficiency should be emphasized be-
cause most of these applications are battery powered. The second column of the
table reflects the toggle counts per cycle multiplying the cycle counts for each
encryption, the results of which can be approximately equivalent to the energy
consumption per encryption. Further, we divide the toggle counts per encryption
by the number of plaintext bytes in one encryption. The obtained values can be
assumed to be the energy required for the block cipher to encrypt one byte plain-
text. This indicates that the PRESENT-80 might be less energy-efficient than
the AES in standalone encryption mode. Table 3 illustrates the power values
(by using post-place and route simulation model in XPower, which will be dis-
cussed later) obtained in standalone simulation on Xilinx Spartan-3 XC3S1000
FPGA, which well support our assumption based on toggle counts. Moreover, it
reflects the relative accuracy of GEZEL toggle counting when predicting the ac-
tual power consumption of designs. Note that both the quiescent and dynamic

Table 3. Power results of standalone FPGA implementations (10 encryptions for each
block cipher working at 20MHz)

Quiescent Dynamic Time Energy Energy/byte

Power(mW) Power(mW) (ms) (mJ) (μJ/byte)

AES-128 51.51 40.75 6 0.55 3.46
PRESENT-80 44.06 3.49 16.5 0.78 9.81
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power values are collected from Vccint, the FPGA core power supply voltage
since we only consider the FPGA core power variation.

4 FPGA-Based Hardware/Software Co-design

Using the above GEZEL simulation environment we can translate the GEZEL
description of the AES and PRESENT and control shells into synthesizable
VHDL, which can be then added as coprocessors in the Xilinx Platform Studio
(XPS) 9.1.02.

MicroBlaze

Control shell

On-chip Peripheral Bus (OPB)

OPB IPIF

Memory-mapped 
registers

lmb_bram
Crypto Coprocessor

Crypto Core

Decoder

Debug
Module

Timer
Module

ilmbdlmb

Fig. 5. FPGA-based SoC platform

The SoC system is built on a Xilinx Spartan-3E XC3S500EFG320 develop-
ment board with both on- and off-chip memory. Since each on-chip memory read
or write only takes 2 clock cycles compared to 22 and 23 clock cycles for off-chip
memory read or write on our specific FPGA platform, we fully utilize the on-chip
memory for our system design. Note that our research objective is trying to ad-
dress some system integration issues or considerations for general SoC systems,
and here the selection of Microblaze as the microprocessor and OPB as system
bus is for detailed discussion.

A hardware timer module is added for measuring the speed of both crypto
hardware coprocessor and the crypto software running on MicroBlaze. The timer
will be removed when doing power estimation of the whole SoC system using
XPower.

XPower is a commercial-off-the-shelf tool to estimate power consumption of
Xilinx SRAM-based FPGAs. XPower utilizes either pre-routed or post-routed
design data, and then makes a power model either for a unit or for the overall
design. It considers resource usage, toggle rates, input/output power, and many
other factors in estimation.

To get a good indication of the power consumed by the device using XPower,
an accurate VCD file is needed. Here, we use a complete post-place-and-route,
timing-accurate model built in XPS to generate the VCD file. Other system
settings use the XPower default values.
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Table 4. FPGA implementation areas (unit: slices)

Crypto core Coprocessor with wrapper

AES-128 1,877 2,097
PRESENT-80 271 460

The areas for AES and PRESENT coprocessors are presented in Table 4.
The resources used for the other parts in both the systems are the same: 8Kb
Block RAM, 8 slices for LMB wrapper, 99 slices for OPB wrapper, 749 slices for
Microblaze and 65 slices for Debug module.

Table 5. FPGA system performance results (100 encryptions for each block cipher)

SW HW HW/SW HW HW/SW

cycle counts cycle counts cycle counts speedup speedup

AES-128 432,756 1,200 77,428 360.6 5.6
PRESENT-80 2,295,863 3,300 51,427 695.7 44.6

The numbers in Table 5 is for 100 iterations encryption for the AES and
PRESENT, and each iteration transmits plaintext and key to the cipher. The
performance improvement from using hardware/software co-design is satifying
respect to software using C codes which were compiled with -O2 optimization.
However, combined with the former co-simulation results in GEZEL we see that
the overhead is substantial. Take AES-128 FPGA codesign for example, 100 iter-
ations in hardware only should take 1200 clock cycles, while we have used 77,428.
This overhead factor (65X) is due to the communication with the processor and
implementation of various command sequences with the encapsulated hardware.
Note that the big differences in cycle counts and speedup values between GEZEL
co-simulation and FPGA SoC implementation are due to the different processors
(StrongARM vs. MicroBlaze) and compilers (arm-linux-gcc vs. mb-gcc).

In the former relative power estimation using toggle counts, we deduced that
the more power-efficient PRESENT block cipher is in fact less energy-efficient

Table 6. FPGA system power and energy simulation results (4 encryptions for each
block cipher woking at 50MHz)

Quiescent Dynamic Time Energy Energy/byte

Power(mW) Power(mW) (ms) (mJ) (μJ/byte)

AES-128 31.25 19.97 62.08 3.18 49.68
PRESENT-80 31.25 19.61 41.2 2.10 65.48
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than AES, in terms of toggles per encryption per byte together with the standalone
FPGA simulation results. When we look at this problem again in an FPGA-based
SoC platform, we can find that the system with PRESENT coprocessor consumes
slightly less total power than that with the AES coprocessor. However, still we can
find that the PRESENT-based system is less energy-efficient than the AES-based
system.

5 Conclusions

Due to the encryption speed and ease of implementation, block ciphers have
been widely used in various embedded applications. Much research effort has
been put on the trade-off designs on hardware implementation of block ciphers,
but, we think that the hardware profile is unable to predict the performance and
energy (or power) in the context of a real embedded system.

Using our design flow we can not only get some early prediction of performance
and dynamic power consumption under co-simulation environment, which can
help designers to refine the design at an early stage, but also get accurate perfor-
mance and energy values after on-board FPGA implementation, which can help
designers select the crypto coprocessor best fitted to some specific platforms.
The illustrated SoC designs with AES and PRESENT coprocessors identify the
hardware/software interfaces design as an important system integration issue,
and address the power- and energy-efficiency evaluation issue at the system level.
Our future work may focus on different hardware/software interfaces’ (e.g. FSL)
impact on the performance and energy- or power-efficiency of a typical SoC
system with different kinds of crypto coprocessors, and possible optimization
methods.
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Abstract. Nanotechnology based fabrication, which relies on self-assembly of 
nanotubes or nanowires has been predicted to be an alternative to silicon tech-
nology since lithography based IC is approaching its limit in terms of feature 
size. However, such processes are expected to be less reliable, to have high de-
fect density and to be handled with effective defect tolerant techniques. Thus, 
reliability is a major challenge in the future of IC design. To this end, different 
coding techniques have been proposed to improve reliability of future technolo-
gies. In this paper we analyze the trade-off between the area and the reliability 
added in each chip employing the Reed Muller coding as the coding technique.  
We estimate the reliability and area increase of different orders of the Reed 
Muller decoding and observed that while the area increases, the  reliability de-
creases. Our approach is to define a framework and help designers in order to 
decide on the configuration of the Reed Muller to be used. Finally, we provide a 
guideline to optimize the architecture making an optimal trade off between the 
area and the reliability.  

1   Introduction 

The major challenges posed for future memory design is the problem of soft errors 
[1]–[4] and high power consumption [5]–[7].  As process technology scales to small 
nanometers, high-density, low cost, high performance integrated circuits, character-
ized by high operating frequencies, low voltage levels and small noise margins will be 
increasingly susceptible to temporary faults [8]. In very deep sub-micron technologies 
single-event upsets like atmospheric neutrons and alpha particles severely impact 
field-level product reliability, not only for memory, but for logic also. When these 
particles hit the silicon bulk, they create minority carriers which if collected by the 
source/drain diffusions, could change the voltage level of the node. 

Transient faults are also a major concern in space applications, with potentially se-
rious consequences for the spacecraft, including loss of information, functional failure 
or loss of control [9]. Although SEU is the major concern in space and terrestrial ap-
plications, multiple bit upsets (MBU) have also became important problems in de-
signing memories because of the following: 1) The error rate of memories increased 
due to the continuing technology shrinkage [10,11]. Therefore the probability of hav-
ing multiple errors increases. 2) MBUs can be induced by direct ionization or nuclear 
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recoil after passing a high-energy ion [12]. 3) The experiments in memories under 
proton and heavy ions fluxes in [13,14] show that the probability of having multiple 
errors is increased when the size of memory is increased. Unfortunately, packaging 
and shielding cannot effectively be used to shield against SEUs and MBUs since they 
may be caused by neutrons which can be easily penetrate through packages [10, 15].  

In order to maintain a good level of reliability, it is necessary to protect memory 
cells with protection codes. Hamming code and Odd Weight code are largely used 
to protect memories against SEU because of their efficient ability to correct single 
upsets with a reduced area and performance overhead [16]. However, multiple up-
sets cause by a single charged particle can provoke errors in the system protected by 
these single-error correcting codes. In the other hand, Reed-Muller is another error 
correcting code able to cope with multiple upsets. It has a wide range of digital ap-
plications including: storage systems, wireless or mobile communications and high-
speed modems.  

In this paper, we provide a guideline to optimize the architecture making an opti-
mal trade off between the area and the reliability. Different configurations were de-
scribed using the HDL language and results for power and area were obtained using 
Synopsys power tools. We have carried out different experiments for studying the 
power, performance and reliability tradeoffs and analytical models for estimation of 
reliability and Mean Time To Failure (MTTF) for different configurations are pre-
sented. The results show that while the area increases the reliability decreases. We 
introduced a metric for comparing the different configurations. The metric is based on 
dividing the MTTF of each of the configurations by the cost of the configuration im-
plementation. Based on the experimental results, for different fault error rate different 
configuration is better than other configurations. 

This paper is organized in as follows. Section 2 provides an overview of the 
Reed Muller’s encoding and improved decoding followed by Section 3 that analy-
ses the reliability and MTTF of the proposed configurations. In Section 4 the cost of 
embedding RMC into a memory is described and finally, section 5 illustrates some 
conclusions. 

2   Reed Muller Codes (RMC) 

Reed-Muller codes [17]–[19] are binary linear codes; that is, an RMC is a subspace of 
the vector space of all binary n-bit vectors. An RMC can be described in terms of a 
generator matrix, the linear combination of the rows of which over a field of two ele-
ments are the code words of RMC. The 0th order RMC of length 2m has a single all 
ones row in the generator matrix. The ith order of 0≤i≤m, RMC is a linear code of 
length 2m and is iteratively defined as below. The generator matrix of 1st order RMC 
is obtained by adding m more rows to the 0th order RMC generator matrix such as the 
columns of the generator matrix in the portion of the m rows now added are the 2m 
binary m-tuples. 

Definition: The rows of a generator matrix for linear codes are called the generators 
of the code. 
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Definition: The set of generators of a 1st order RMC excluding the generator of the 0th 
order RMC is denoted by S1 and the generator for the 0th order RMC is denoted by S0. 

The generators of the ith order RMC are obtained by taking the union of S0, S1,S2, …, 
Si-1, Si, where Si={s1,1 ◦s1,2◦ …◦s1j: where s1,k ∈  S1, 1≤k≤j and s1,1 ◦s1,2◦ 
…◦s1j: is the vector obtained by taking the bit-by-bit AND of the elements of the j 
vectors} and i≤j≤I, up to no larger ι than m. It is known that the set of vectors 
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The generators of the 2nd order RMC of length 24 are { }210 SSS ∪∪  and they 

are 11 in number. 
It is known that the minimum Hamming distance between any two words of an ith 

order RMC 0≤i≤m is equal to 2m-i.. Therefore an ith order RMC can be used to correct 
{(2m-i -1)/2} errors and detect 2m-i-1 errors.  

2.1   Reed Muller Encoding 

If G is the generator matrix of a linear code with k rows and n columns, then a  
k-dimensional vector X can be encoded (i.e., the corresponding code word can be 
obtained) by computing X*G where * stands for matrix multiplication. Therefore any 
code word generated by G is a linear combination of the rows of the matrix. It is ad-
vantageous in implementation to derive the code word in what is known as a system-
atic form. 

Definition: A code generated by a matrix G is said to be systematic code if X*G=XP, 
where P is an (n-k) vector containing the check bits. 

2.2   Reed Muller Decoding 

The essential idea behind this technique is that, for each row of the generator matrix, 
we attempt to determine through a majority vote whether or not that row was em-
ployed in the formation of the codeword corresponding to our message.  

Definition: Let p be any monomial of degree d in RM with redundancy form p’. Then 
we form the set J of variables not in p’ and their complements. The characteristic 
vectors of p are all vectors corresponding to monomials of degree m-d over variables 
of J. (*) Since ν is a bijection and ν-1(0)=0, this implies that any monomial containing 
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both a variable and its complement is equivalent to the monomial of degree 0. Thus, 
without loss of generality we only consider monomials where the variables are dis-
tinct (i.e. no variable and its complement appears) [20, 21]. 

(*) Note: Any monomial containing a variable and its complement corresponds to the 
0 vector (through ν: ν(x1 x1’)= ν(x1)*ν(x1’)=0)  

Example: Assume that we are working over RM(2,3). The characteristic vectors of 
x0x1 are the vectors corresponding to monomials {x2, x2’}. The characteristic vectors 
of x0 are the vectors corresponding to the monomials {x1 x2, x1 x2’, x1’ x2, x1’ x2’}. 

Algorithm for RMC decoding technique 

I. Examine the rows with monomials of degree r. 
II. Calculate the 2m-r characteristic vectors for the row. 

III. Take the dot product of each of these vectors with received message. 
IV. If the majority of the dot products is 1 then set the position in our original 

message vector corresponding to this row to 1 else 0. 
V. When we finish with all monomials of degree r we take the vector of length 
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row used to calculate the vector. 

VI. Add the result to the received message. 
VII. Proceed to recursively on the rows corresponding to monomials of degree r-1. 

2.2.1   Improved Reed Muller Decoding Circuit 
The key to implementing the above algorithm is the majority voting. An improved 
decoding algorithm for 3 error correcting was proposed in [22]. The majority voting 
was traditionally done by using Wallace trees [23][24]. In general, Wallace Trees 
(Figure 1) (WT) based majority decoder is very hardware intensive and hence a new 
majority voting technique is required. We refer to this new voting (decoding) circuit 
as Improved Reed Muller Decoding Circuit (IRMD). 
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Fig. 1. 4 Bits Wallace Tree 
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For our analysis we will use the triple error correcting RMC with improved decod-
ing and, instead of the traditional Wallace trees used for majority voting, we are using 
a set of OR and AND gates (shown in Figure 2). Note that the maximum number of 
errors is 3 so the maximum number of 1’s or 0’s is 3 in each case. 

 
Fig. 2. IRMD circuit for 4 bits 

In Table 1 we show the additional area in terms of 2 input AND gates and delay 
while incorporating in different configurations of RMC the IRMD decoder in a 
256Mbits memory. The additional memory requirement for incorporating ECC is also 
given. It is clear that the currently proposed technique uses much less hardware for 
majority voting; it eventually reduces power consumption, area and delay.  

Table 1. Additional Gates and Delay using IRMD 

Coding 
Technique 

Additional
#Bits 

Additional 
#Gates*1 

RM(1,4) 220% 451 
RM(2,5) 100% 1340 
RM(3,6) 52.6% 5490 

*1: Equivalent to 2 input AND gates 

3   Reliability and MTTF 

In order to improve reliability of a chip lets say memory, we have to add some reliability 
(redundant bits) in each codeword. The reliability of the chip is strongly dependent on the 
number of bits in each word. Hence, it is imperative to analyze the reliability of such an 
architecture technique to validate its applicability in real designs. In order to analyze the 
reliability of the proposed architecture we make the following assumptions [25]:  
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1. The probability of a number of faults occurring in a fixed period of time with a 
known average rate is independent of the time since the last event (Poisson  
distribution). 

2. Bit failures are statistically independent. 

The probability of having exactly i faulty bits in a word including check bits (w+c) 
can be given by: 

                              

ticwit ee
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where λ  is the fault rate of one bit and t is time parameter.  
The reliability, r(t) of a word can be then expressed as: 
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where P{NE} denotes the probability that there is no error, and P{iF} indicates the 
probability of having  i faults.  

The reliability of memory is the product of the reliability of all its words and the 
integration of the reliability function gives the mean time to failure MTTF as, 
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Fig. 3. Effect of time on the reliability of 256MBits memory (λ=10-5upsets/bit per day) 
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Formulas (1)–(3) were described and solved using MATLAB for estimating the re-
liability and MTTFs of different organizations. 

In Figure 3 one can see that reliability of the memory is improved dramatically us-
ing lower order RMC coding. While using first order decoding, RM(1,4) we can see 
that memory will fail after 1000 days while the memory will fail at less that 200 days 
using 4th and 5th order RMC. Memory using 3rd order RMC will fail at a stage just less 
than 300 days and using 2nd order just after 500 days which is less than half compar-
ing to the most reliable configuration of the 1st order.     

In Table 2 we are presenting the MTTF for a 256Mbits memory using different 
configurations of RMC in different fault rates. One can note that 1st order RMC wins 
out the other configurations. In high defect rates (λ=10-2) the MTTF of the 1st order is 
almost 4X compared to the 5th order 4x while at lower defect rates the MTTF of 1st 
order is almost 10X. more than 5th order RMC. 

Table 2. MTTF of 256Mbits memory in different fault rates using different configurations 

 
RMC 
(1,4) 

RMC 
(2,5)

RMC 
(3,6)

RMC 
(4,7)

RMC 
(5,8) 

λ=10-5 3443 2495 1500 780.9 391.6 
λ=10-4 625.8 313 157.3 79.13 40.07 
λ=10-3 63.51 32.3 16.65 8.86 4.99 
λ=10-2 7.30 4.23 2.77 2.17 2.01 

4   Cost Analysis  

Reliability is not the only major issue in the design of future chips. The different or-
ganizations (orders) of Reed Muller Coding have been coded using HDL. The results 
reported here are for a 32X32 register file; however the design is generic in data path 
width. It should be mentioned that the design was simulated using ModelsimTM and 
was tested for functionality using various inputs.  

The outputs from the VHDL coded architecture are validated against a standard 
MATLAB output. The architectures were synthesized using the Synopsys tools. 
Synopsys design powerTM was used to estimate the power consumption. In Table 3 
we can see the results while incorporating five orders of RMC in a 32x32 register 
file. As was expected while moving from one order to another (higher) the area and 
power overhead was decreased while reliability and MTTF is also decreased as 
shown in Figure 3 and Table 2.  

Table 3. 32x32 register file RMC 

Area Power  
μm2 % Mw % 

Base 103658 100 93 100 
RMC (1,4) 332949.5 321.2 292.20 314.2 
RMC (2,5) 209596.5 202.2 193.81 208.4 
RMC (3,6) 159011.4 153.40 144.43 155.3 
RMC (4,7) 135076.7 130.31 127.70 137.31 
RMC (5,8) 122223.1 117.91 110.68 119.01 
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In order to compare the efficiency of different configurations compared to their 
overhead and reliability (MTTF), we provide a metric that allow us to compare them 
in terms of efficiency of the MTTF improvement and cost overhead. Therefore, we 
define this metric as MTTF Improvement Per Cost (MIC) by 

                                          Cost

FailToTimeMean
MIC == ,                                        (4) 

where Cost is defined by 

                                                AreaPowerCost ⋅=                                                 (5) 

Designers like higher MTTF and cost to take high and low values, respectively. 
This lead that designs to have high value of the new metric MTTF Improvement Per 
Cost (MIC).   

Table 4. MIC for 256Mbits memory 

 
RMC 
(1,4) 

RMC 
(2,5)

RMC 
(3,6)

RMC 
(4,7)

RMC 
(5,8) 

λ=10-5 3.54 6.14 6.53 4.53 2.90 
λ=10-4 6.43 7.72 6.85 4.59 2.96 
λ=10-3 6.53 7.94 7.25 5.14 3.69 
λ=10-2 7.50 10.41 12.06 12.58 14.86 

 

 
Fig. 4. MTTF per Cost 
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Table 4 and Figure 4 show the value of this two metric in different fault rates. We 
can observe that despite the MTTF showed that 1st order RMC wins out the other con-
figurations and that the 5th order was the worst, suing this metric (Table 4, Figure 4) 
we can see that in higher fault rates (λ=10-2) results in almost 2X compared to the 
most reliable 1st order RMC which is the worst in these fault rate compared to the 
other configurations. In the lower fault rates (λ=10-5) the 3rd order RMC wins out.  In 
fault rates of λ=10-4 and λ=10-3 the 2nd order of RMC wins out the other configurations.   

Therefore, based on the results of Table 4 and Figure 4 in higher defect rates 5th 
order RMC is more valuable while 2nd and 3rd order RMC are better in the case of less 
fault rates. 

5   Conclusions 

In this paper, we have presented an analysis for different configurations (orders) of 
modified triple error RMC circuit. We have shown that using higher orders of RMC 
the area and thus power overhead of the circuit will be decreased significantly while 
the reliability and the MTTF will be decreased as well.  On the other hand, we have 
significant improvements in the reliability and the MTTF when using RMC of lower 
orders like 1st, 2nd and even 3rd but the overhead penalty is also significant and thus we 
proposed a guideline how to construct circuits making an optimal trade-off between 
reliability and area overhead.   
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Abstract. This paper presents a computationally efficient iterative Reed-Solomon
(RS) decoder, which is suitable for software implementations on processors with
instruction extensions for Galois field multiplication. Simulation models of pro-
posed instructions were included into a processor simulator and performance of
RS decoding was analyzed. The method has been validated for both Digital Video
Broadcasting (DVB-T/H) and WiMAX and the method provides a total link budget
improvement of up to 1 dB.

1 Introduction

Reed-Solomon (RS) codes are block-based error correcting codes with a wide range of
applications in digital communications and storage. The code operates by oversampling
a polynomial constructed from the data, thus redundant information is generated. This
redundant information allows errors during transmission or storage to be corrected. The
number and type of errors that can be corrected depends on the characteristics of the
Reed-Solomon code.

The error correction capability of the RS code, i.e., the number of errors that can be
corrected, t, is determined by the minimum distance 2t + 1 of that specific code. There
are many algorithms capable of correcting more than t errors as described in [1,2,3].
Exceeding the conventional errors correction capabilities requires significantly more
computational complexity, reflected in additional silicon area and increased power con-
sumption. Maximum-likelihood (ML) or near-to-ML decoding algorithms have pro-
hibitive computational complexity for large alphabet RS codes [4]. Simplified VLSI
implementations of the Koetter-Vardy algorithm are reported in the literature [5]. In [6],
a soft input RS algorithm is described, which is based on an algebraic bounded distance
decoder. The decoder iterates through several decoding attempts, with different num-
bers of erasures and compares the Euclidean distance between the candidate codeword
and the received data with a threshold defined by an acceptance criterion. The iteration
starts by assuming 2t erasures and each iteration decreases the expected number of era-
sures by two while in our case we start with two erasures and each iteration increases
the expected number of erasures by two. Based on our end-to-end simulations of DVB-
T/H and WiMAX, the total computational load is decreased by up to 15% using this
approach.

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 126–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Channel State Information (CSI) from the convolutional decoder is used to declare
the erasures iteratively, as presented in [7] and in our previous work [8], such that the
error correction capabilities of the RS decoder is maximized. Most of the erroneous
data packets contain less than t errors per packet. In these cases, only the less computa-
tionally demanding Peterson-Gorenstein-Zierler RS decoding algorithm is used (see [4]
for details). If there are more that t errors in a data packet, a more complex decoding al-
gorithm is employed. We start with two erasures, based on the observation that erasure
reliability information is inversely proportional to the number of erasures. Our decision
to increase the number of erasures and start a new iteration is based on the degree of the
error locator polynomial, as described in [8]. The rest of the paper is organized as fol-
lows: Section 2 describes the erasure iterative decoding algorithms. Section 3 describes
the GF instruction set. The numerical simulations are given in Section 4 followed by
conclusions in Section 5.

2 Erasure Iterative Decoding

The error and erasure decoding algorithm described in this section is applicable to any
communication protocol utilizing RS GF(2m) fields. It also applies for any GF(2m)
field for either full length or shortened codes. The total number of errors and erasures
the algorithm can correct for is shown in Table 1. For most, if not all communication
protocols, the link budget assumed in the standard is such that if the SNR at the receiver
is in the bounds specified by the conformance testing, most of the time the RS packets
have no errors at all. For example, based on our simulations for the DVB-T/H protocols,
in the Quasi Error Free (QEF) transmission mode, on average only 0.02% of the packets
have errors and the average number of erroneous symbols per packet is less than four.
As the SNR further decreases, the number of packets with errors grows exponentially.

For an average of 99.98% of the time, there are no errors in the packets. For the
remaining 0.02% of the time, if there are eight or less errors per packet, we use the
Peterson-Gorenstein-Zierler [4] error-only correction algorithm. For low SNR, when
more than eight erroneous symbols per packet are encountered, the error and erasure
algorithm we developed, which is described below, becomes useful. In our previous

Table 1. Combinations of the number of errors and erasures

Errors (r) Erasures (s)
8 0
7 2
6 4
5 6
4 8
3 10
2 12
1 14
0 16
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Start decoding, errors only (s=0),
using one of the known decoding

algorithms, such as
Peterson-Gorenstein-Zieler,

Euclid or Forney-Messey-Berlekamp
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Fig. 1. Erasure decoding flowchart

work [8], we described the derivation of the CSI information and decoding algorithms
only briefly touching the erasure decoding. For convenience, the decoding flowchart
from [8] is illustrated in Fig. 1. The erasure decoding algorithm is described next.
Throughout this section the following notations are used. Array x = (x0,x1, . . . ,xN−1)
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is a valid codeword and r = (r0,r1, . . . ,rN−1) is the received codeword. The generator
polynomial g(·) is defined as

g(D) =
2t−1

∏
i=0

(
D−αi+ j) (1)

where α j is the jth unity root, and 2t + 1 is the code’s minimum distance. Array
m = (m1,m2, . . . ,mt) is the error position vector and e = (em1 ,em2 , . . . ,emt ) is the er-
ror magnitude vector. The error polynomial, assuming that the decoder can decode t
errors, reads as

e(D) =
t−1

∑
i=0

emiD
mi . (2)

The syndromes are denoted by Si,0 ≤ i ≤ δ− 2 with δ = 2t + 1, the minimum dis-
tance. The following formula can be written for the syndromes [4,9]

Si = r (D)
∣∣∣
D=εi+ j

= e(D)
∣∣∣
D=αi+ j

=
t

∑
p=1

emp(α
i+ j)mp . (3)

The Fourier transform of the code word x in GF is

Xi =
N−1

∑
k=0

xkαik, i = 0, . . . ,N −1 (4)

where αN = 1. This can be expressed in polynomial form as

Xi =
N−1

∑
k=0

xkDk
∣∣∣
D=αi

. (5)

In other words, the spectral coefficients are the evaluation of the polynomial at the
roots α j, j = 0, . . . ,N −1. The inverse Fourier transform in GF is defined as:

xk =
1
N′ X (D)

∣∣∣
D=α−k

. (6)

where N′ = 1 in GF(2m). Given the error locators Lp = αmp , where p = 1, . . . ,t the
syndromes and the connection polynomial are

Si =
t

∑
p=1

emi (Lp)
i+ j (7)

where i = 0, . . . ,δ−2 and respectively

B(D) =
t

∏
i=1

(1−LpD) = 1 + B1D+ . . .+ BtD
t (8)

where B(D) = 0 for D = Lp, p = 0, . . . ,δ−2.
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Therefore, the inverse Fourier transform of the coefficients of the polynomial B will
yield the bmpbm coefficients with nonzero values at the error locations. Since bmem = 0
for m = 0, . . . ,n−1, the following convolution will be zero:

n

∑
p=0

BpEi−p = 0 . (9)

Or, with B0 = 1 and knowing that the maximum number of expected errors is t, the
former expression becomes:

Ei =
t

∑
p=1

BpEi−p, i = 0, . . . ,n−1 . (10)

Since Ei ≡ Si it follows that:

Si =
t

∑
p=1

BpSi−p . (11)

Any solution of the system equation (11) will lead to the error locators. In our approach,
the error locations and magnitudes are determined using Peterson-Gorenstein-Zierler
decoding described in [4].

After decoding, the syndromes are computed again and tested against zero. If all the
syndromes are zero, the decoding process is successful and the next packet is passed to
the decoder. If there are nonzero syndromes, the error and erasure decoding is enabled.
The error and erasure decoding is described next. The interested reader can find a more
detailed description in [4]. The error and erasure locators are Lp = αmp where p =
1, . . . ,r and Zp = αmp , p = 1, . . . ,s, respectively, with r and s described in Table 1.

The decoding procedure is briefly introduced in the following. A more detailed de-
scription can be found, e.g., from [10,4].

1. Replace the symbols in the erasure positions with zero.
2. Compute the syndromes Si, 0 ≤ i ≤ δ − 2. The syndromes will represent δ − 1

successive entries in the GF Fourier Transform of the received sequence:

Si =
r

∑
p=1

empLi+ j
p −

s

∑
p=1

xlpZi+ j
p , i = 0, . . . ,δ−2

where lp is the declared erasure position. The syndromes and the GF FT of the of
the error and erasure pattern relationship is described as:

Si = Ei+ j, i = 0, . . . ,δ−2 .

The syndromes are located in the middle of the GF FT of the incoming word as:

E = {E0,E1, . . . . . . ,Ei+ j, . . . ,Ei+δ−2, . . .︸ ︷︷ ︸
Si,...,Si+ j

. . . ,EN−1}



Efficient Reed-Solomon Iterative Decoder 131

3. Define the erasure locator polynomial:

Λ(D) =
s

∏
i=1

(D−Zp) = λ0Ds + . . .+ λs−1D+ λs .

4. Modify the original syndromes (Forney):

Ti =
s

∑
p=0

λpSi+s−p, i = 0, . . . ,δ− s−2

where Ti are the modified syndromes and contain the error and erasure information.
It can be shown that the former expression is equivalent to:

Ti = −
r

∑
p=1

BpTi−p, i = r,r + 1, . . .

5. Compute Ti coefficients. The error locator polynomial coefficients are obtained
through the Massey shift register algorithm [11]. First, determine the 2t − s co-
efficients of T from:

Ti =
s

∑
p=0

λpSi+s−p .

For this step the syndrome and erasure locator polynomials have the following
form:

S(D) = S0 + S1D+ . . .+ S2t−1D2t−1

λ(D) = λ0 + λ1D+ . . .+ λsD
s

6. Massey algorithm:
(a) Initialize: k = 0, B(0)(x) = 1, L = 0, and T (x) = x.
(b) Loop k = 1, . . . ,2t − s .
(c) Compute the discrepancy

Δ(k) = Tk −
L

∑
i=1

B(k−1)
i Tk−1 .

(d) If Δ(k) = 0 then go to step (h).
(e) Modify connection polynomial

B(k)
i (x) = B(k−1)

i (x)−Δ(k)T (x) .

(f) If 2L ≥ k then go to step (h).

(g) L = k−L, T (x) = B(k−1)(x)Δ(k)−1
.

(h) T (x) = xT (x) .
7. Compute the error locations by solving the B(x). At this point, if the degree of

the error locator polynomial is different from the assumed value r, the algorithm
is reiterated for a different number of errors and erasures as illustrated in the flow
chart.
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8. Compute error magnitudes using Forney’s algorithm [9]

LkΩ
(
L−1

k

)
Ψ′ (L−1

k

)

where Ω(x) = B(x)[S(x) + 1], Ψ′(D) is the formal derivative of Ψ(D) =
Γ(D) [S(D)+ 1], and Γ(D) is the erasure locator polynomial.

9. Compute the erasure magnitudes

ZkΩ
(
Z−1

k

)
Ψ′

(
Z−1

k

) .

10. Correct for errors and erasures.

3 GF Instructions

The instruction set extensions for GF arithmetic are depicted in Table 2. The definition
of gfmul is designed to allow implementation of Galois field multiplication in the field
GF(2M) when the lowest 16−M bits are 0. In particular the results are undefined if the
bits are not 0. The definition of gfnorm is designed to allow implementation of Galois
field multiplication in the field GF(2M) when the lowest 16−M bits are 0; parameter
vt will hold the 2M − 1 bits of the result of the un-normalized multiply, right-padded
with 17− 2M zeros. The parameter va will hold the M bits of the polynomial, right
padded with 16−M zeros. It is assumed that the MSB of the polynomial is a 1 and,
therefore, does not need to be represented. Parameter N should be M−2. In particular
the results are undefined if the bits are other than 0. The instructions gfmul and gfnorm
are described in Table 3.

Table 2. Galois field instructions (GF multiplier, multiplier add, normalize and multiply reduce).
⊗ denotes bitwise XOR, N is prime polynomial degree, acr is accumulator register.

Instruction Operation

rgfmul (vt, va, vb) f or(i = 0; i < 16; i++)
vr[vt]i ← g f mul(vr[va]i,vr[vb]i)

rgfmac (vt, va, vb) f or(i = 0; i < 16; i++)
vr[vt]i ← g f mul(vr[va]i,vr[vb]i)⊗vr[vt]i

rgfnorm (vt, va, N) f or(i = 0; i < 16; i++)
vr[vt]i ← g f norm(vr[vt]i,vr[va]i)

rgfmuldred (act, va, vb) t ← 0
f or(i = 0; i < 16; i++)

t ← g f mul(vr[va]i,vr[vb]i ⊗ t
acr[act]31−0 ← (t ⊗acr[act]31−15) ·015
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Table 3. Definitions of instructions gfmul and gfnorm. ∧ denotes bitwise AND.

gfmul (x,y): N ≥ 8; Mi ≥ 8 gfnorm (x,y):
r ← 0 r ← x
f or(i = 0; i < N; i++) f or(i = 0; i < N; i++)

r ← r⊗
(
(0i · x(15−Mi) ·0Mi−i)∧ y(15−i)

16
)

(r ← r15−1 ·0)⊗
(
c∧ r15

16
)

return(r) return(r)

4 Performance Evaluation

In order to verify the applicability of the method and estimate the performance, experi-
ments with Sandbridge Technologies SBX processor [12,13] were carried out. The SBX
processor is a multithreaded processor with vector unit and the SBX development tools
contain instruction set simulator allowing new instructions to be incorporated. We mod-
eled the GF multiplication instructions from Tables 2 and 3 and included these special
instructions to SBX simulation model. Next, software code for the iterative decoding
algorithm described in this paper was written such that the code special Galois field
instructions were exploited in the code.

As an example, in Table 4, it is illustrated the total number of GF instructions re-
quired to decode one RS(2004,188) packet for two distinct cases, first using only scalar
and second using only vector instructions.

The total number of instructions required for decoding one RS packet is roughly 16
times higher in the scalar case then in the vector case. In the DVB-T case, for the highest
bitrate of 31.67 Mbps, the decoder is called 21763 times per second. The total number
of cycles spent by the processor in vector mode for the GF operations only is less then
18 MHz (a fraction of the SBX processor capabilities) compared to 277 MHz in scalar
mode.

The iterative decoding algorithm was tested in the end-to-end DVB-T/H and
WiMAX simulated systems, specified by ETSI EN 744 V1.4.1 (2001-01) and
IEEE802.16d. The simulations were performed by using the SBX simulation tools. Us-
ing our GF instructions, the total number of cycles per second consumed in the SBX
processor, for the highest bit rates specified in the standards and assuming that every
packet has eight errors and eight erasures, are the following: 29 MHz for the 31.67 Mbps
DVB-T, 9 MHz for the 4.4 Mbps DVB-H including the optional second RS decoder at

Table 4. Number of GF scalar and vector instructions required to decode one RS(204, 188) packet
using the Peterson method

Scalar Instructions Vector Instructions

gfmul → 3040 rgmul → 190
gfmac → 6656 rgfnorm → 192
gfnorm → 3072 rgfmulred → 416
Total 12768 Total 798
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the link layer, and 68 MHz for the WiMAX 73.19 Mbps. Based on Monte-Carlo analy-
sis, for the end-to-end DVB-T/H and WiMAX system, our method provides a total link
budget improvement of up to 1 dB.

The performed simulation experiments show the potential of the proposed method
and effectiveness of the proposed special instructions. Although the GF instructions
have been used in SBX processor, the described method and GF instructions are
general-purpose. Significant improvement on software implementations for iterative
decoding could be expected by extending GPP/ASIP platforms with the proposed GF
instructions.

5 Conclusions

In this paper, a computationally efficient iterative RS decoder was proposed, which
is suitable for software implementations on processors with instruction extensions for
Galois Field multiplication. Our experiments showed that adding vector GF instructions
to the SBX processor, the overall performance of the Reed Solomon decoding for both
DVB-T/H and WiMAX was improved about 16 times. The significant speedup in the
execution of cyclic codes decoding makes the iterative decoding possible, improving the
total link budget with up to 1 dB, based on our end-to-end simulations. The total number
of cycles per second consumed by the SBX processor were 29 MHz for the 31.67 Mbps
DVB-T, 9 MHz for the 4.4 Mbps DVB-H and 68 MHz for the WiMAX 73.19 Mbps and
these numbers prove the real time capabilities or the proposed approach.
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Abstract. In this paper a novel flexible architecture exemplarily applied
for multioperable GNSS receivers including an ASIP and an arithmetic
oriented embedded FPGA is presented. The advent of next generation
GNSS-systems as well as different demands in different system phases
require high flexibility. The proposed architecture provides high energy
and area efficiency compared to software-programmable processor while
preserving flexibility. Exemplarily the mapping of the computational in-
tensive base band processing of a Navstar GPS receiver to an ASIP-
eFPGA architecture will be discussed. Results are based on a standard
cell based design regarding the ASIP. A design method for physically
optimized VLSI-macros has been applied for the implementation of the
eFPGA. All results are acquired for a 90 nm-CMOS technology. It will
be shown that the proposed heterogeneous architecture features an at-
tractive position in the design space regarding area and energy efficiency
as well as flexibility.

Keywords: ASIP, arithmetic oriented eFPGA, multioperable GNSS.

1 Introduction

Progresses of modern CMOS technology enables the integration of different ar-
chitecture blocks in a so called heterogeneous System on Chip (SoC). These
architecture blocks are programmable processors (general purpose, GPP; digital
signal processing, DSP; application specific instruction set, ASIP) as well as re-
configurable processing units (RPUs) like embedded Field Programmable Gate
Arrays (eFPGAs) and dedicated standard cell as well as physically optimized
macros. One aspect of the design space describing energy and area efficiency for
different discrete architecture blocks is shown in Fig. 5. Area and energy effi-
ciency are increasing from programmable architectures (e.g. GPPs) to dedicated
macros. However, flexibility is decreasing. The combination of different architec-
ture blocks with different characteristics to an application specific architecture
provides an attractive position in the design space. One interesting domain for
such heterogeneous architectures are mobile handheld devices supporting global
navigation satellite systems (GNSS). These systems are becoming more and more
popular. Besides Navstar GPS there are a couple of systems which are currently

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 136–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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under development or in evaluation phase (e.g. Galileo, Compass, Glonass). Base
band receiver architectures of these systems are comparable. The CDMA based
systems (Navstar, Galileo, Compass) are differing e.g. concerning the spreading
codes. Typically, base band processing tasks are mapped to dedicated macros.
Therefore, adaptations to realize base band processing of other GNSS systems or
required modifications caused by a change of specification are hardly realizable.
One solution to gain flexibility is provided by realizing base band processing on a
software-programmable processor [1]. Currently available solutions lack of either
real time processing capabilities or reasonable power consumption acceptable for
mobile handheld devices. The ASIP-eFPGA architecture proposed here provides
on the one hand high flexibility and on the other hand higher energy as well as
area efficiency compared to software-programmable processors.

The contribution is organized as follows: In section 2 architectures composed
of a processor and an RPU are shortly sketched. The ASIP-eFPGA architec-
ture is discussed in section 3. Afterwards the design flow of an ASIP-eFPGA
architecture is presented in section 4. Section 5 provides a short description of a
Navstar GPS receiver and the mapping to a ASIP-eFPGA architecture. Results
and a discussion are given in section 6. The contribution is summarized with a
short conclusion in section 7.

2 Processors Featuring a Reconfigurable Accelerator

Architectures including a programmable processor and a RPU are subject of
several research projects (e.g. [2][3]). Devices based on such architectures are
also employed in first commercial products (e.g. [4][5]). All these architectures
typically include a RISC-based GPP and a general purpose RPU. RPUs can
be classified into coarse and fine grain architectures. Coarse grain architectures
are often based on ALU-like elementary processing elements while fine grain
architectures like FPGAs are build on lookup-table-based (LUT) logic elements
(LEs). These LEs are embedded in a flexible but costly interconnect structure.
A detailed comparison of different Processor-RPU architectures is given e.g. in
[6]. In the following the classification scheme of Processor-RPU architectures
presented in [6] will be shortly sketched. This scheme classifies the coupling
degree between RPU and processor into tight and loose coupling (see Fig. 1).

The integration of the RPU as reconfigurable functional unit (RFU) is the
tightest coupling scheme. Data communication is realized by the central register
file of the processor. The architecture of the processor has to be modified. The
instruction set architecture (ISA) has to be enhanced by so called custom in-
structions (CIs). These CIs abstract the corresponding operations on the RPU.
Furthermore, the corresponding control logic related to these CIs have to be re-
alized. Dedicated functional units residing in the execute stage of the processor
and the RPU usually have different maximum clock frequencies. Thus, a syn-
chronisation mechanism has to be provided to guarantee coharency. Alltogether
this coupling scheme results in a significant design effort.
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Fig. 1. Classification scheme according to the coupling degree of processor and RPU

The attachment of the RPU as reconfigurable coprocessor unit (RC) to the
processor bus like e.g. an internal memory component is a more loose coupling
scheme. The RPU can directly access the internal memory. Communication
events between internal memory and RPU allocate the processor bus. So the
processor can not access the internal memory meanwhile. This possibly restricts
the computational parallelism of processor and RPU. The RPU can be mapped
into the address space of the processor. Thus, the RPU can be controlled by the
processor by means of memory load and write instructions.

The loosest coupling scheme is the integration of the RPU as so called attached
reconfigurable processing unit (ARPU). Within this coupling mechanism the
RPU is connected to a peripheral bus. The peripheral bus is connected with
the processor bus via a bridge. Typically the peripheral bus is a bottleneck for
high throughput communication events between processor and RPU. RPU and
processor can be designed independently. The utilization of off-the-shelf IP-cores
for the processor and the RPU reduces design complexity.

3 ASIP-eFPGA Architecture

Digital signal processing applications can usually be partioned into control and
data flow oriented parts. Control oriented parts are most suited to be mapped
on a programmable processor. Data flow oriented tasks are appropriate to be
mapped on architecture blocks which provide the possibility to exploit concur-
rency. Dedicated macros or FPGA-like architecture blocks support concurrency
of according data flow oriented tasks. The architecture presented in this contri-
bution is composed of a programmable ASIP and an arithmetic oriented eFPGA.
The programmability of the ASIP allows the realization of tasks in software. In
order to increase the efficiency operations which are frequently occurring in a
given application domain can be designed as special instructions. These special
instructions are added to the ISA of the ASIP. The corresponding functional
units of these instructions have to be realized. The ISA of the ASIP has to
be specified before production of the overall architecture. The configurability of
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the eFPGA facilitates the mapping of variable datapaths also after production
as so called eFPGA operators. Due to the overhead related to configurability
the efficiency of mapped datapaths is worse than that of the implementation
as dedicated macros. In order to increase efficiency the eFPGA architecture is
tailored to an arithmetic oriented application domain (see also [7]). eFPGA op-
erators are logically encapsulated by ASIP instructions provided in the ASIP
ISA. Thus, complex data flow oriented operators are realized on the eFPGA and
binded via inline assembler calls in the program code written in C.

3.1 ASIP

The ASIP core applied here is based on a Harvard architecture with an ini-
tial RISC-like ISA. The pipeline of the processor includes five stages (similar
structure as the DLX-processor [8]). The ISA of the ASIP can be enhanced with
instructions which realize operations frequently required in the given application
domain. Exemplarily the effect of the insertion of a dedicated multiply instruc-
tion including the corresponding dedicated functional unit will be discussed in
section 6. Furthermore, the ASIP ISA was enhanced with a CI activating opera-
tors which are configured on the eFPGA. The definition of the CI is independent
of the functionality and the position of the eFPGA operators. The assembler syn-
tax and binary coding of this CI includes the addresses of source and destination
operands of the register file as well as an index field which is required to address
a lookup table. This lookup table includes characteristics like position and delay
of the eFPGA operators which are currently mapped on the eFPGA. The control
logic related to the CI ensures data communication between ASIP and eFPGA
as well as the synchronization on the ASIP side.

3.2 Arithmetic Oriented eFPGA

The eFPGA is based on a static reconfiguration concept and has been tailored
to applications featuring basic arithmetic operators. The architecture consists
of a two-dimensional alignment of identical cluster tiles. In Fig. 2 one cluster
tile including a block diagram of an LE is depicted. Within a cluster tile a
field of 16 LEs is included. This addresses the characteristics of arithmetic data-
paths which are usually arranged in a two-dimensional way in so called bit and
function slices. A function slice is composed of processing elements which all
calculate the same elementary function on bit level, while bit slices represent
all processing elements assigned to the same bit value. The LE is less complex
than LEs residing in commercial general purpose FPGAs (e.g. [9]). An LE of the
eFPGA includes three basic LUT2 components, two XOR-gates and a couple
of configuration multiplexers. With these building blocks elementary arithmetic
operators can be realized efficiently (e.g. two gated fulladditions within one LE).
The interconnect architecture of the eFPGA is twofold. The global general pur-
pose interconnect structure is based on an island style scheme including routing
switches (RS) and connection boxes (CB) [10]. Besides the global interconnect
the local interconnect directly connects inputs and outputs of neighboring LEs.
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Fig. 2. Cluster tile and LE of the arithmetic oriented eFPGA

To support the mapping of arithmetic oriented datapaths broadcast lines as-
signed to the local interconnect are integrated. These broadcast lines allow the
distribution of the same operands over a larger range of the eFPGA. Operand
broadcasting is common in arithmetic datapaths. The local interconnect is not
restricted by the boundaries of one cluster tile. In fact, broadcast lines and local
LE connections are distributed across cluster boundaries, thus building a flat
widespread two-dimensional array of interconnected LEs. Connection points be-
tween local and global interconnect is resided in the CBs. In the CBs local signals
can be switched on the global general purpose interconnect and vice versa. Al-
together the interconnect structure of the eFPGA is tailored to the mapping of
arithmetic operations. The general purpose interconnect of the eFPGA which is
typicalley critical concerning time and power consumption is much less complex
for this optimized eFPGA than interconnect structures of commercial FPGAs.

3.3 ASIP-eFPGA Coupling

The coupling of eFPGA and ASIP has great impact on the overall efficiency and
demands different mechanisms which are realized as dedicated control structure.
For the ASIP-eFPGA architecture presented here a coupling scheme related to
the RFU coupling class has been implemented. A simplified block diagram of the
coupled ASIP-eFPGA architecture including the control structure is depicted in
Fig. 3. The index field of the binary representation of the CI addresses a lookup
table which includes the characteristics like number of delay cycles as well as
the address on the eFPGA of the desired eFPGA operator. A component which
generates a halt signal for the pipeline registers of the processor evaluates the
entry of the delay field of the addressed line in the lookup table. The possibility
to generate a halts signal is required if the delay of the eFPGA operator is longer
than one ASIP clock cycle. Furthermore, the operator address entry is utilized to



ASIP-eFPGA Architecture for Multioperable GNSS Receivers 141

ASIP

fetch

decode

execute

memory

writeback

eFPGA

Op. 2
Op. 1

Op. 5

Op. 4Op. 3

generate
halt signal

Lookup table
(eFPGA operators)

stall pipeline

register source operands (rs1, rs2, rs3) 

register destination operand (rd) 

idx delay address

8 6 5

... ... ...

... ... ...

index

delay
operator
address

CI: efpga_ci <index>,<rd>,<rs1>,<rs2>,<rs3>

Fig. 3. ASIP-eFPGA architecture including the control structure required for coupling

select the corresponding eFPGA operator. The source operands are transferred
from the pipeline register at the beginning of the execution of the execute stage to
the eFPGA operator. Depending on the complexity of the operator the pipeline
has to be stalled. After finishing the calculation the result is transferred back
to the pipeline register between execute and memory stage. Whilst taking into
account forwarding mechanisms which also have been implemented in the ASIP
the result is written into the central register file in the writeback stage.

4 Design Flow

4.1 ASIP

The ASIP design flow is based on the Processor Designer environment provided
by CoWare [11]. The Processor Designer enables the automatic generation of
software development tools like compiler, assembler, linker and a cycle-accurate
simulator from the the architecture description of the corresponding ASIP in
LISA (language for instruction set architectures). The ASIP is derived from the
LT RISC processor template. The LT RISC is a basic RISC-processor compara-
ble to the DLX-processor of [8] and has been utilized as reference for comparison.
The processor template also includes a basic compiler design description which is
necessary to generate a corresponding C/C++ compiler semi-automatically. The
realized LISA description of the ASIP is cycle-accurate and includes the imple-
mentation of the coupling control structures. Besides the software development
tools the Processor Designer provides the generation of a synthesizable VHDL
description of the ASIP including the coupling control structures all originating
from the LISA description.

4.2 Arithmetic Oriented eFPGA

The realization of the arithmetic oriented eFPGA is based on a design approach
utilizing an eFPGA architecture template which enables the possibility to prune
the architecture of an eFPGA for an arithmetic oriented application domain
[12]. The implementation of the layout is based on a design method utilized for
the realization of physically optimized VLSI-macros. Therefore, the definition
of all architecture parameters of the eFPGA according to the description of
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section 3.2 has been specified. In addition a couple of hand-crafted basic layout
cells for structural components like LE, RS, CB, etc. have been implemented.

Currently, no automated place and route tool is available which translates a
general netlist description of an eFPGA operator to a placed and routed architec-
ture dependent netlist representation. Therefore, the realisation of applications
is time consuming as the architecture dependend netlist has to be implemented
manually. As most arithmetic datapaths are regular, manual mapping is viable.
Power values related to eFPGA operators have been acquired by transistor netlist
simulations based on the configuration information of the mapped datapaths.

4.3 Cycle Accurate ASIP-eFPGA Architecture Model

The cycle accurate model of the ASIP-eFPGA architecture has been assembled
from the VHDL description generated from the LISA sources and a crafted be-
havioral VHDL description of the eFPGA. The LISA description incorporates
the ASIP and the coupling control structures. The VHDL model of the eFPGA
realizes the cycle accurate behavior of the addressed eFPGA operators at the in-
terfaces between ASIP and eFPGA. Physical costs for the ASIP and the coupling
control structures have been determined by means of a standard cell design flow.
This design flow starts with the synthesis applying the Design Compiler envi-
ronment from Synopsys. After generation of the standard cell netlist the design
has been placed and routed utilizing First Encounter from Cadence. Area and
power consumption values for the parts of the design which have been realized
with LISA are based on a placed and routed standard cell design approach. To
improve the results a couple of optimization steps like design flattening, uniquify-
ing, clock gating, etc. have been performed. On the one hand the cycle accurate
model of the ASIP-eFPGA architecture has been applied for the verification of
the design. On the other hand the determination of the switching activity of
each input, output and net of the design required the ASIP-eFPGA model. The
switching activity has been used to acquire a detailed power profile.

5 Software GPS Correlator

The basic architecture of a typcial Navstar GPS receiver can be composed of
three building blocks. The received signal is filtered, mixed to an intermediate
frequency and subsequently digitized. The digital signal is processed in a fol-
lowing base band block. This block is typically composed of several correlator
channels. The realization of one correlator channel used in this contribution is
depicted in Fig. 4. Each channel is assigned to a satellite. The digital controlled
oscillator (DCO) is used to generate the base band carrier frequency. The in-
coming signal is mixed by this frequency to in-phase and quadrature signals
(I, Q). These signals are multiplied by satellite dependent pseudo random gold
codes (EML, P). The length of the code is 1023 chips. Products are accumu-
lated for a given period of time (1 ms) and saved in correlator registers. Their
content is evaluated by the third building block (correlator control) which is in
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Fig. 4. Exemplary eFPGA operator (right) to realize a part of the correlator (left)

charge of controlling PRN code generation and the DCO. Beginning with a cold
start of the receiver all visible satellites are determined in the acquisition phase.
Therefore, a two-dimensinal search space spanned by carrier frequency and code
phase variations have to be processed for each satellite. If a correlated value is
greater than a threshold value, the corresponding satellite is visible. In the sub-
sequent tracking phase the carrier frequency and code phases are permanently
updated due to relative motion between satellite and receiver. Word widths of
the processed signals within the correlator have great impact on the signal-to-
noise ratio (SNR). In the following two scenarios incorporting different word
widths are considered. The low-precision mode (LP) implies a digitized satellite
signal and carrier frequency of 2 bit and a 4 bit signal at the output of the
mixers. In the high-precision mode (HP) yielding a SNR gain of approx. 0.5 dB,
word widths of the mixer inputs is 4 bit and 8 bit for the output respectively. At
first, the corellator has been realized as ANSI-C software-implementation using
integer arithmetic (LT RISC reference values). As the LT RISC allows no sub-
word parallelism, the implementation of LP- and HP-mode is equal. Integration
of the eFPGA provides advantageous exploitation of subword parallelism. Basic
arithmetic operators have been replaced by two CIs representing the correspond-
ing eFPGA operators (see 1 und 2 for HP mode in Fig. 4). The datapath of the
ASIP and the registers of the register file have a word length of 32 bit. Thus, in
HP mode four and in LP mode eight operations can be processed at once.

6 Results

Results have been acquired for a clock frequency constraint of 220 MHz. Delay
and energy values have been determined each under worst case conditions for
a 90 nm CMOS technology. Cost values for data and program memory (each
8 KB) have been included by applying memory models of CACTI 5.0 [13]. Values
depicted in Tab. 1 are related to the correlation for one combination of code
phase and carrier frequency. Power consumption and chip area is dominated by
program and data memory. For the LT RISC with multiplier the memory area
portion is 84 % of the overall area. This amount decreases for an ASIP-eFPGA
with multiplier in HP-mode to 59 %, while eFPGA area contributes with 26 %.
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Table 1. Area, energy and delay comparison for different architectures

ASIP-eFPGA ASIP-eFPGA with Multiplier 
LT_RISC

LT_RISC  
with Multiplier. LP HP LP HP 

Area [mm²] 0,633 0,655 0,803 0,914 0,829 0,939 
Delay [µs] 9191 2545 237 413 184 322 

Energy [µJ] 125.8 50.1 4.77 8.12 4.04 7.66 

Implementation results for different architecture blocks including ASIP-
eFPGA architectures and the LT RISC are illustrated in Fig. 5. The diagram
is based on implementation results of several typical digital signal processing
applications [14]. Realizations utilizing the LT RISC are less efficient than these
of a state-of-the-art DSP (Texas Instruments, TMS320C642). Positions for im-
plementations on the ASIP-eFPGA architecture are between the DSP and the
FPGA domain. The efficiency gain achieved by integrating a dedicated multiplier
unit for the LT RISC is greater than for the ASIP-eFPGA architecture. This
is caused by the fact that almost all multiply operations are relocated on the
eFPGA. Only address operations take advantage of a dedicated multiplier. The
realization of the operators depicted in Fig. 4 as dedicated macros would yield
higher efficiency gains compared to the ASIP-eFPGA. However, such a solution
would be fixed for these operators. Hence, there is no way to modify and adapt
operators after production, while a flexible ASIP-eFPGA provides this oppor-
tunity. Mapping GNSS receivers to ASIP-eFPGA architectures is promising as
computational intensive arithmetic operators can be executed advantegeously on
the eFPGA. Furthermore, these operators can be easiliy adapted to meet chang-
ing requirments. Considering the discussed Navstar GPS receiver SNR could be
traded for area and energy efficiency by changing the precision mode (LP, HP).
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7 Conclusion

Within this contribution a new architecture for GNSS receivers composed of an
ASIP and an arithmetic oriented eFPGA has been introduced. In comparison
to programmable processors ASIP-eFPGA architectures feature higher area and
energy efficiency while retaining high flexibility. Both area and energy efficiency
could be increased by more than one order of magnitude for the realization of
a software Navstar GPS correlator compared to equivalent processor implemen-
tations. Physical costs for a 90 nm CMOS realization have been determined by
means of a standard cell design regarding the ASIP and a transistor netlist based
model related to the physically optimized design of the eFPGA component.
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For the current generation of heterogeneous multi-core embedded processor, System-
on-Chip and FPGA platforms, implementation and optimisation of Digital Signal and
Image Processing applications is an exceptionally challenging task, with the widely
accepted viewpoint being that moving towards high abstraction (system) level design
principles is the only feasible option to increasing the productivity of application syn-
thesis on such complex platforms. However, this movement, which has been widely
touted for many years, has been slow to materialise due to the vast array of processing
components, architectures and design methodologies at the disposal of any such system
designer.

Despite the lack of standardisation in this area, it is apparent that design methodolo-
gies and portable application synthesis tools which exploit model-based design tech-
niques are slowly becoming the norm and coming to the fore in both research and
commercial contexts. The plethora of issues to be addressed by such synthesis method-
ologies is, however, expansive, incorporating partitioning, scheduling, synthesis of soft-
ware, hardware, memory and interprocessor communication infrastructures, and opti-
misation of all of these physical and other real-time aspects such as throughput, latency
and power. Significant advances must yet be made in all of these areas before any ap-
proach can be isolated as defacto-standard. This session brings together world leading
academic and industrial experts in the areas of application modelling and transforma-
tion, synthesis methodologies and tools, implementation optimisation techniques and
heterogeneous device architectures to present lessons thus far in the move towards sys-
tem level design, and the potential presented by exploitation of such model-based design
processes in the future.
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Abstract. As FPGA devices have become larger and more capable,
they have transitioned from being used primarily as flexible glue logic to
being used as central data processing elements in many digital systems.
Typically, these systems (including video processing, wired and wireless
networking) rely on streaming architectures. These architectures differ
significantly from traditional processor architectures and are able to of-
fer unique challenges and benefits for system designers. In particular,
streaming architectures in FPGAs are well suited for implementing up-
coming digital convergence applications. We summarize how streaming
architectures in FPGAs relate to other programmable platforms for em-
bedded applications and focus on key problem areas related to the design
tools and platform infrastructure that will drive these new applications.

Keywords: dataflow, FPGAs, digital convergence.

1 Introduction

Historically, FPGAs have been used primarily to implement small amounts of
glue logic between other chips. In contrast with discrete logic gates, FPGAs and
other programmable logic devices offered increased integration and flexibility
in board-level design. Increasingly, however, FPGAs can be considered to be
programmable platforms in their own right, and are capable of forming the
central processing resource in a complex system with only a small number of
additional parts.

However, there are significant barriers to using FPGAs as direct replacements
for other programmable platforms. Despite the recent development of higher-
level design tools for FPGAs, the bulk of FPGA systems are still coded largely
in RTL. As a result, system designers must still overcome basic timing closure
in order to meet throughput requirements. FPGAs have also become not only
bigger, but also more complex and heterogeneous, including not only logic and
routing resources, but also embedded memory blocks, specialized DSP elements,
and complex external interface blocks for gigabit ethernet and PCI express.
Effectively using such complex and diverse features can be time consuming,
since they must not only be connected correctly to the datapath of a system but
must also be integrated into the control logic.
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We believe that overcoming these barriers is most likely to be found by re-
thinking the programming models used to target FPGA design. On the pro-
gramming model side, we argue that dataflow stream processing offers significant
benefits for FPGA design. Dataflow neatly captures many processing-oriented
FPGA applications, such as signal processing and networking, in a way that
corresponds to how application designers conceptualize such problems. Dataflow
models of computation also map well onto streaming architectures which can be
directly implemented in FPGAs.

However, the data processing of most FPGA applications only provides a
portion of the logic programmed into the FPGA. We seek not only programming
models that are appropriate for specifying application kernels, such as FFTs or
IPV4 packet processing, but also platforms for integrating those kernels into a
system. This integration often requires a significant amount of logic which is not
primarily application processing, such as physical interfaces for external memory
controllers and processor busses. The complexity and real-time requirements of
these components are not easily handled by dataflow design techniques. At the
same time, most application designers are not interested or skilled in how to
build such system-on-chip architectures.

As a result, we anticipate that tools for dataflow design in FPGA will become
more commonplace making it easier for algorithmic designers to implement de-
signs in FPGAs without HDL programming and explore a variety of architectural
tradeoffs without significant source code changes. At the same time, these tools
will assume more complete system-level infrastructure, such as complete working
processor systems, avoiding the complexity of system-on-chip design.

2 Streaming Architectures in FPGA

FPGAs are unique among programmable platforms in that streaming architec-
tures can be implemented with elements of varying granularity. This enables
different actors in a dataflow specification to be easily implemented at matched
data rates, despite differing computational loads. A flexible granularity, com-
bined with memory elements distributed through the FPGA fabric, also enables
elements to match the natural memory locality of actors in the specification.
In contrast, multiprocessor architectures inevitably have fixed granularity ele-
ments. This requires actors with low computational load to be grouped together
in order to use the processors efficiently, possibly incurring scheduling overhead
and increasing latency. A fixed granularity architecture also requires actors with
high computational load to be partitioned across multiple elements. Although
in some cases these refactorings can be performed automatically by a compiler,
such as StreamIT [1],

FPGA streaming architectures tend to be organized in systolic structures in
which neighbors communicate directly through dedicated FIFOs. As a result, in-
ternal communication bandwidth can be very high while minimizing contention
between elements. In contrast, multiprocessor architectures tend to be orga-
nized around shared communication networks. These networks typically provide
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a high aggregate communication bandwidth, but the bandwidth is shared be-
tween all or some communication elements, which can increase latency. If the
communication latency is high enough, external shared memory may be neces-
sary to provide efficient buffering. For applications where latency is not critical
(such as video processing) this can be an effective streaming implementation, as
in the Philips Trimedia Streaming Software Architecture. Some multiprocessor
architectures do provide low-latency neighbor-neighbor interprocessor commu-
nication, such as Picochip, or the capability to support both neighbor-neighbor
communication models and shared-memory communication such as the MIT
RAW [2] architecture commercialized by Tilera.

In many embedded systems, data storage can be implemented entirely on chip
in local buffers. Increasingly, however, external memory storage is necessary
for some applications, such as multi-frame buffers in MPEG4-AVC decoding.
Streaming FPGA systems typically include application-specific logic for exter-
nal direct memory access (DMA). For example, the FlexWAFE framework [3]
provides predefined memory interfaces for building such DMA logic. In contrast,
high-performance multiprocessor architectures tend to rely either on processor-
programmed DMA and explicitly managed scratchpad memories, or caches com-
bined with prefetching.

Another example of such video processing architecture is shown in Figure 1.
This diagram shows a streaming implementation of an MPEG 4 simple profile
decoder. Most of the blocks are connected by object FIFOs, which are imple-
mented out of memory blocks in the FPGA, and additionally provide the ability
to randomly access the contents of the FIFO without removing data. This avoids
the need to read data and store it in a separate memory location before being
able to process it. The copy controller actor interacts with a memory controller
implemented in the FPGA to keep a small window of the previous frame avail-
able for the motion compensation block while the bulk of the frame is stored
in DRAM that is outside the FPGA. Using external DRAM enables scaling to
frame sizes that exceed the internal memory of the FPGA. Conceptually, the
copy controller, memory controller, and interface FIFO blocks combine to im-
plement a large object FIFO, while taking into account the access patterns of a
specific application to optimize memory performance.

Networking applications (such as the simplified router shown in Figure 2)
are also commonly implemented using streaming architectures in the FPGA.
Typically, the header and payload of the network packet are processed separately.
In this case, the payload is stored in external DRAM, while a routing decision
is made based on the contents of the header. In more complex applications, the
payload may also be processed, such as in a network intrusion detection system.
Note that some control information must be exchanged between the payload
manager and IP lookup actors, since packets may be dropped due to high network
traffic or completed out of order depending on the IP lookup algorithm used.

Although these examples are simplified representatives of todays FPGA ap-
plications, we believe that future applications will be dominated by stream-
ing architectures. By decoupling components in a system, enabling them to be
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independently optimized and reused, large applications can be constructed. In
particular, since they are suitable for both high-rate networking and video pro-
cessing, streaming architectures will likely be central to the implementation of
future digital convergence applications in FPGAs.

3 Design Tools

The most direct way to implement streaming architectures in FPGAs is using
a design methodology based on dataflow process networks [4,5,6,7]. Dataflow
models of computation allow the concurrency of an application to be expressed
explicitly, since state accesses are localized, and components communicate only
through deterministic channels. Additionally, the mapping into an FPGA im-
plementation can be finely controlled, since each dataflow actor can be mapped
independently to the FPGA, while being decoupled by queues. Conceptually,
this leads to a globally asynchronous, locally synchronous (GALS) style model,
even if the actual FPGA implementation is completely synchronous for efficiency
purposes. By adding additional annotations, or through analysis by a compiler,
the sizes of physical queues can be determined.

Although FPGA designers have been building streaming architectures for
some time, it is only relatively recently that high-level design tools for support-
ing such a dataflow methodology have become available. Early versions of Xilinx
System Generator provided a dataflow-like model by automatically instantiating
logic to propagate when signals contain valid data [8]. In more recent versions,
most signals are modeled as fixed rate data streams and data is assumed to
always be valid. The small number of components that do not process data
at fixed rates, such as the Viterbi decoder, include explicit data valid signals
which must be connected to appropriate signals by a designer. A more general
dataflow model, which uniformly represents not only when data is available in
the implementation but also when it can be accepted is provided by the CAL
tools [9].

The main downside of dataflow-oriented tools such as these is that many
aspects of a system are not straightforward to describe in a strict dataflow model.
For instance, control decisions must be coordinated between different actors as
additional streams. Information arriving at irregular intervals compared to the
primary data (such as user-initiated interaction) is difficult to model without
allowing for ’peeking’ at an input stream to see if data is available. However,
this capability must be used carefully to avoid introducing unintended non-
determinism. A likely solution to these control operations is to make use of
hierarchy, parameterization, and alternative models of computation in concert
with dataflow, enabling the programming structure behind control decisions to
be expressed more easily [10,11]. However, these techniques have not yet been
widely adopted in tools.

A further downside of dataflow-oriented tools is that they typically require
applications to be rewritten to explicitly use fine-grained streaming interfaces to
achieve high performance. This makes it difficult for programmers accustomed to
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the sequential processing/unbounded memory model provided by most program-
ming languages to transition to these tools. We believe that existing compiler
technology, such as loop and memory dependence analysis, can solve this prob-
lem, enabling applications to be written using coarse grained domain-specific
structures, such as packets in a networking application or macroblocks in a
video application. Although these compiler transformations have not been used
widely in general-purpose compilers, since they tend to scale to large programs
poorly, we believe they can be successfully applied in this context, since individ-
ual dataflow actors exhibit a high degree of locality.

4 C-to-gates

The move towards advanced compiler technology is most easily seen in the changes
in EDA tools based on C-to-gates. Many of these tools provide a dataflow-like
designmethodologywhere aprogrammercanuse streamingAPIs to express coarse-
grained parallelism in a system. Whereas older tools often support a relatively sim-
ple mapping from C language constructs into RTL, newer tools in this area such as
Synfora, a spinout of the HP Labs compiler team [12,13], employ a wider variety
of algorithmic synthesis techniques. These techniques enable operator-level paral-
lelismtobe extracted fromnested-loopcodeand for thoseoperators tobe scheduled
onto FPGA resources, with automatic pipelining and resources sharing, if appro-
priate. Leveraging these compilation techniqueswithin the contextof a dataflowac-
tor, and expressing the communication between actors using streaming interfaces
results in a powerful design language for embedded systems. In particular, it allows
designers to concentrate on interesting problems for meeting a desired throughput,
such as eliminating unnecessary data dependencies and managing reference local-
ity in external memory.

Although C-to-gates is a promising design methodology for streaming systems
in FPGAs, many obstacles still remain. One disadvantage of adopting C as
a design language for streaming systems is the widely varying usage models
and compiler technology. Although C code is often valued for its portability,
off-the-shelf C code must inevitably be rewritten to meet the constraints of a
particular tool, achieve high-quality results, and (perhaps most importantly)
explicitly express the streaming structure of the system. Even worse, due to
variations in compiler technology and language requirements, the resulting code
is unlikely to work well in another tool. The wide span of these tools is largely
indicative of the lack of a good synthesizable standard in the area, as well as the
high rate of innovation.

One key issue that any such standard will have to solve it is that it is often
difficult to directly capture the richness of dataflow semantics in a sequential C
simulation. For instance, dataflow actors can conceptually run forever, interact-
ing through streams. In order to represent this, the actor behavior must be sus-
pended and other actors executed. If feedback loops are present, this suspension
might have to occur after every actor execution in order to avoid deadlock of the
simulation. This can be dealt with conveniently by executing a multi-threaded
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simulation. SystemMOC [14] is a promising approach in this area, using SystemC
for specification and simulation and as a front-end for simulation. Older mod-
eling techniques such as YAPI [15] implemented similar simulation techniques
without the benefit of SystemC abstractions.

Another important problem is the integration of generated components into
a system, which might require communication of control and data information
with a processor or external interfaces. For instance, Handel-C tools developed
by Celoxica and now being marketed by Agility are bundled with board sup-
port packages targeting interfaces on many FPGA board (such as video input
and output). ImpulseC provides integration with Xilinx EDK in order to im-
plement processor accelerators in the FPGA fabric. Although these interfaces
could be represented explicitly (as with HDL), it is preferable for a high-level
tool flow to provide higher-level abstractions of such interfaces, in order to ab-
stract the signal-level interfacing and timing issues. Abstracting these interfaces
in standard platforms using standard APIs becomes crucial to enabling high-level
design.

5 Memory Interfaces

One area where many of the issues in design tools combine is in memory in-
terfaces. These interfaces contain many low-level timing details which are not
handled well by high-level design tools, and hence the physical memory con-
troller is typically treated as a black box with client-side streaming interfaces
for providing addresses and exchanging data. However, from the perspective of
high-level design tools, these client-side interfaces often have complex protocol
requirements. For instance, memory controllers often support a variety of burst
lengths, where consistency between the burst length specified and the number of
data values read must be maintained. Programming errors may result in dead-
lock or misinterpretation of data. In other cases, timing requirement and inter-
stream dependencies can be difficult to represent in a high-level design tool. For
instance, a memory controller may require that all of the data is present before
a write address is given. In other cases, because of the design of the memory
technology, it may not be possible to stall a read transaction if data cannot be
processed fast enough. Although additional buffering can be included in order to
mitigate these problems, it can increase memory access latency and reduce the
performance of the system. Simulation can also be a problem, since read/write
and write/read dependencies within the memory controller are essentially tight
dataflow feedback loops.

In order to solve these problems, we have begun investigating even higher-level
programming APIs for memory interfaces. Our intention is that these APIs, com-
bined with compiler-directed scheduling, can be a target-independent method of
interfacing to memory. The intermediate requirements of a particular memory
controller and/or memory technology can be handled explicitly in the library,
likely using tool-specific pragmas or other techniques, and a library user can still
obtain good performance. A first attempt in this direction is shown in Figure 3.
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void write word(u32 a, u32 d)
void write line(u32 a, u32 d1, u32 d2, u32 d3, u32 d4)
void read word(u32 a, u32 &d)
void read line(u32 a, u32 &d1, u32 &d2, u32 &d3, u32 &d4)

Fig. 3. A memory interface API

This simple API is explicit about how data is aggregated into bursts, but not how
the bursts are actually implemented in terms of stream transactions with a partic-
ular memory controller. A particular tool is likely to inline this API and schedule
individual stream transactions with the memory controller across multiple cycles
in order to achieve high throughput.

6 Implementation Platforms

To a large extent the platform infrastructure that supports these design tools
can be generic, enabling the same underlying interfaces to be leveraged by many
tools. One possibility is for these interfaces to be delivered as individual system
components in a tool like Xilinx EDK. However, assembling such components,
such as processor, memory interfaces, and networking interfaces, to construct
a working system can be difficult. Particularly, when a control processor and
operating system is involved, a large design space combined with complex system
interactions and informal design constraints can make it difficult to get to a first
working system.

Instead, we anticipate that the platform infrastructure to build streaming sys-
tems will be provided by partial designs preconfigured in the FPGA. An example
of one such system is shown in Figure 4. This system encapsulates a basic working
processor subsystem, along with a Linux operating system [16]. This subsystem
can be preimplemented and verified without knowledge of the system that it will
be coupled with. A user-defined streaming system can then be implemented in
the remaining portion of the FPGA, without modifying the preconfigured design.
This system can be implemented using the partial reconfiguration capabilities
of Xilinx FPGAs.

The usage model of such a system is that the processor subsystem does not
take part in the bulk of the data processing, but instead performs low-rate con-
trol processing which is not time-critical. However, the processor is capable of
being involved in the configuration process of the FPGA, and providing a more
programmer-friendly entry into the system. For instance, although the processor
subsystem and operating system are initially loaded from the boot flash, the
processor interacts with the internal configuration access port of the FPGA to
configure the remaining portion with user-supplied logic. The operating system
is also capable of providing robust libraries and process management, including
memory protection, as the basis for building an application. Memory protec-
tion can also be provided on the fabric bridge between the FPGA and memory,
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Fig. 4. A partially preconfigured FPGA system

coordinated with and managed by the processor, in order to protect the processor
and other tasks using memory from programming errors in the FPGA.

7 Conclusion

Streaming architectures and dataflow design techniques are one of the great
underlying approaches to addressing concurrent design. They have been used
in FPGAs for some time, while being implemented in languages such as RTL
HDL, with poor underlying support. Especially with the push towards multicore
processors, it is likely that the general tool support for streaming programming
models will improve greatly in this area. Fortunately, although the high-level
abstractions may not yet be settled, the support for algorithmic programming
of FPGAs from C means that FPGAs are likely well positioned to follow any
trends that arrive. In contrast, FPGAs are significantly lacking in design li-
braries, since most FPGA IP is targetted towards system-on-chip design, rather
than algorithmic design. We prefer to avoid the system-on-chip design problem
by providing a combination of better design tools and better FPGA platforms.
By combining these technologies in the right way, we believe it is possible to
provide a ’user-space’ design experience, where FPGA system designers will be
comfortably abstracted from the bulk of the low-level programming detail. As a
result, they can be enabled to build complex systems more quickly.
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Abstract. Dataflow formalisms have provided designers of digital sig-
nal processing systems with analysis and optimizations for many years.
As system complexity increases, designers are relying on more types of
dataflow models to describe applications while retaining these implemen-
tation benefits. The semantic range of DSP-oriented dataflow models has
expanded to cover heterogeneous models and dynamic applications, but
efficient design, simulation, and scheduling of such applications has not.
To facilitate implementing heterogeneous applications, we utilize a new
dataflow model of computation and show how actors designed in other
dataflow models are directly supported by this framework, allowing sys-
tem designers to immediately compose and simulate actors from different
models. Using an example, we show how this approach can be applied
to quickly describe and functionally simulate a heterogeneous dataflow-
based application such that a designer may analyze and tune trade-offs
among different models and schedules for simulation time, memory con-
sumption, and schedule size.

Keywords: Dataflow, Heterogeneous, Signal Processing.

1 Introduction

For a number of years, dataflow models have proven invaluable for application
areas such as digital signal processing. Their graph-based formalisms allow de-
signers to describe applications in a natural yet semantically rigorous way. Such
a semantic foundation has permitted the development of a variety of analysis
tools, including determining buffer bounds and efficient scheduling [1]. As a re-
sult, dataflow languages are increasingly popular. Their diversity, portability,
and intuitive appeal have extended them to many application areas with a vari-
ety of targets (e.g., [2][3]).

As system complexity and the diversity of components in digital signal
processing platforms increases, designers are expressing more types of behavior in
dataflow languages to retain these implementation benefits. While the semantic
range of dataflow has expanded to cover quasi-static and dynamic interactions,
efficient functional simulation and the ability to experiment with more flexible
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scheduling techniques has not. Complexity in scheduling and modeling has im-
peded efforts of a functional simulation that matches the final implementation.
Instead, designers are often forced to go all the way to implementation to verify
that dynamic behavior and complex interaction with various domains are cor-
rect. Correcting functional behavior in the application creates a developmental
bottleneck, slowing the time to implementation on a heterogeneous platform.

To understand complex interactions properly, designers should be able to de-
scribe their applications in a single environment. In the context of dataflow
programming, this involves describing not only the top level connectivity and
hierarchy of the application graph, but also the functionality of the graph ac-
tors (the functional modules that correspond to non-hierarchical graph vertices),
preferably in a natural way that integrates with the semantics of the dataflow
model they are embedded in. Once the application is captured, designers need
to be able to evaluate static schedules (for high performance) alongside dynamic
behavior without loosing semantic ground. With such a feature set, designers
should arrive at heterogeneous implementations faster.

Leveraging our existing dataflow interchange format (DIF) package [4], we
implement an extension to DIF based on a form of dataflow, called core function
dataflow (CFDF), that facilitates the simulation of heterogeneous applications.
This extension to DIF, called functional DIF, allows designers to verify the
functionality of their application immediately. From this working application,
designers may focus on efficient schedules and buffer sizing, and thus are able to
arrive at quality implementations of heterogeneous systems quickly.

2 Background

2.1 Dataflow Modeling

Modeling DSP applications through coarse-grain dataflow graphs is widespread
in the DSP design community, and a variety of dataflow models has been de-
veloped for dataflow-based design. A growing set of DSP design tools support
such dataflow semantics [5][6][7]. Ideally, designers are able to find a match be-
tween their application and one of the well studied models, including cyclo-static
dataflow (CSDF) [8], synchronous dataflow (SDF) [9], single-rate dataflow, ho-
mogeneous synchronous dataflow (HSDF), or a more complicated model such as
boolean dataflow (BDF) [10].

Common to each of these modeling paradigms is the representation of com-
putational behavior as a dataflow graph. A dataflow graph G is an ordered pair
(V, E) , where V is a set of vertices (or nodes), and E is a set of directed edges.
A directed edge e = (v1, v2) ∈ E is an ordered pair of a source vertex v1 ∈ V
and a sink vertex v2 ∈ V . A source function, src : E → V , maps edges to their
source vertex, and a sink function, snk : E → V gives the sink vertex for an
edge. Given a directed graph G and a vertex v ∈ V , the set of incoming edges of
v is denoted as in(v) = {e ∈ E|snk(e) = v}, and similarly, the set of outgoing
edges of v is denoted as out(v) = {e ∈ E|src(e) = v}.



Heterogeneous Design in Functional DIF 159

2.2 Dataflow Interchange Format

To describe the dataflow applications for this wide range of dataflow models,
application developers can use the dataflow interchange format (DIF) [4], a
standard language founded in dataflow semantics and tailored for DSP system
design. It provides an integrated set of syntactic and semantic features that can
fully capture essential modeling information of DSP applications without over-
specification. From a dataflow point of view, DIF is designed to describe mixed-
grain graph topologies and hierarchies as well as to specify dataflow-related
and actor-specific information. The dataflow semantic specification is based on
dataflow modeling theory and independent of any design tool.

To utilize the DIF language, the DIF package has been built. Along with the
ability to transform DIF descriptions into a manipulable internal representation,
the DIF package contains graph utilities, optimization engines, algorithms that
may prove useful properties of the application, and a C synthesis framework
[11]. These facilities make the DIF package an effective environment for modeling
dataflow applications, providing interoperability with other design environments,
and developing new tools.

Beyond these features, DIF is also suitable as a design environment for imple-
menting dataflow-based application representations. Describing an application
graph is done by listing nodes and edges, and then annotating dataflow specific
information. The DIF package also has an infrastructure for porting applications
from other dataflow tools to DIF. What is lacking in the existing DIF package
is the ability to simulate functional designs in the design environment. Such a
feature would streamline the design process, allowing applications to be verified
without having to go to implementation.

3 Related Work

A number of development environments utilize dataflow models to aid in the
capture and optimization of functional application descriptions. Ptolemy II en-
compasses a diversity of dataflow-oriented and other kinds of models of compu-
tation [12]. To describe an application subsystem, developers employ a director
that controls the communication and execution schedule of an associated ap-
plication graph. If an application developer is able to write the functionality of
an actor in a prescribed manner, it will be polymorphic with respect to other
models of computation. To describe an application with multiple models of com-
putation, developers can insert a “composite actor” that represents a subgraph
operating with a different model of computation (and therefore its own director).
In such hierarchical representations, directors manage the actors only at their
associated levels, and directors of composite actors only invoke their actors when
higher level directors execute the composite actors. This paradigm works well
for developers who know a priori the modeling techniques with which they plan
to represent their applications.
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Other techniques employ SystemC to capture actors as composed of input
ports, output ports, functionality, and an execution FSM, which determines the
communication behavior of the actor [13]. Other languages specifically target-
ing actor descriptions such as CAL [14]. For complete functionality in Simulink
[7], actors are described in the form of “S-functions.” By describing them in a
specific format, actors can be used in continuous, discrete-time, and hybrid sys-
tems. LABVIEW [6] even gives designers a way of programmatically describing
graphical blocks for dataflow systems.

Semantically, perhaps the most related work is the Stream Based Function
(SBF) model of computation [15]. In SBF, an actor is represented by a set of
functions, a controller, state, and transition function. Each function is sequen-
tially enabled by the controller, and uses on each invocation a blocking read for
each input to consume a single token. Once a function is done executing, the
transition function defines the next function in the set to be enabled.

Functional DIF differs from these related efforts in dataflow-based design in
its integrated emphasis on minimally-restricted specification of actor function-
ality, and support for efficient prototyping of static, quasi-static, and dynamic
scheduling techniques. Each may critical to prototyping overall dataflow graph
functionality. Compared to models such as SBF, functional DIF allows a de-
signer to describe actor functionality in an arbitrary set of fixed modes, instead
of parceling out actor behavior as side-effect free functions, a controller, and a
transition function. Functional DIF is also more general than SBF as it permits
multi-token reads and can enable actors based on application state. As designers
experiment with different dataflow representations with different levels of actor
dynamics, they need corresponding capabilities to experiment with compatible
scheduling techniques. This is a key motivation for the integrated actor- and
scheduler-level prototyping considerations in functional DIF.

4 Semantic Foundation

For a formalism able to support this level of heterogeneity, we derive a special
case of enable-invoke dataflow [16] that we refer to as core functional dataflow
(CFDF), which ensures that the application is deterministic. In this formalism,
each actor has a set of modes in which it can execute. Each mode, when executed,
consumes and produces a fixed number of tokens. This set of modes can depend
upon the type of dataflow model being employed or it may be user-defined. Given
an actor a ∈ V in a dataflow graph, the enabling function for a is defined as:

εa : (Ta × Ma) → B, (1)

where Ta = ℵ|in(a)| is a tuple of the number of tokens on each of the input edges
to actor a (here, |in(a)| is the number of input edges to actor a); Ma is the set
of modes associated with actor a; and B = {true, false} is true when an actor
a ∈ V has an appropriate number of tokens for mode m ∈ Ma available on each
input edge, and false otherwise. An actor can be executed in a given mode at
a given point in time if and only if the enabling function is true-valued.
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The invoking function for an actor a is defined as:

κa : (Ia × Ma) → (Oa × Ma), (2)

where Ia = X1 × X2 × . . . × X|in(a)| is the set of all possible inputs to a, where
Xi is the set of possible tokens on the edge on input port i of actor a. After a
executes, it produces outputs Oa = Y1×Y2× . . .×Y|out(a)|, where Yi is the set of
possible tokens on the edge connected to port i of actor a, where |out(a)| is the
number of output ports. Invoking an actor can in general change the mode of
execution of the actor, so the invoking function also produces the next mode that
is valid. This mode can then be subsequently checked by the enabling function,
and if true for any mode, the actor may be invoked in that mode. If no mode is
returned (i.e., an empty mode set is returned), the actor is forever disabled.

5 Translation to CFDF

Many common dataflow models may be directly translated to CFDF in an effi-
cient and intuitive manner. In this section we show such constructions, demon-
strating the expressibility of CFDF and how the burden of design is eased when
starting from an existing dataflow model.

5.1 Static Dataflow

SDF, CSDF, and other static dataflow-actor behaviors can be translated into
finite sequences of CFDF modes for equivalent operation. Consider, for example,
CSDF, in which the production and consumption behavior of each actor a is
divided into a finite sequence of periodic phases P = (1, 2, ..., na). Each phase has
a particular production and consumption behavior. The pattern of production
and consumption across phases can captured by a function φa whose domain is
Pa. Given a phase i ∈ Pa, φa(i) = (Gi, Hi), where Gi and Hi are vectors indexed
by the input and output ports of a, respectively, that give the numbers of tokens
produced and consumed on these edges for each port during the ith phase in the
execution of actor a.

To construct a CFDF actor from such a model, a mode is created for each
phase, and we denote the set of all modes created in this way by Ma. Given
a mode m ∈ Ma corresponding to phase p ∈ Pa, the enable method for this
mode checks the input edges of the actor for sufficient numbers of tokens based
on what the phase requires in terms of the associated CSDF semantics. Thus,
for each input port z of a, mode m checks for the availability of at least Gp(z)
tokens on that port, where φ(p) = (Gp, Hp). For the complementary invoke
method, the consumption of input ports is fixed to Gp, the production of output
ports is fixed to Hp. The next mode returned by the invoke method must be the
mode corresponding to the next phase in the CSDF phase sequence. Since any
SDF actor can be viewed as a single-phase CSDF actor, the CFDF construction
process for SDF is a specialization of the CSDF-to-CFDF construction process
described above in which there is only one mode created.
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5.2 Boolean Dataflow

Boolean dataflow (BDF) adds dynamic behavior to dataflow. The two funda-
mental elements of BDF are Switch and Select. Switch routes a token from its
input to one of two outputs based on the Boolean value of a token on its control
input. The concept of a control input is also utilized for Select, in which the
value of the control token determines which input port will have a token read
and forwarded to its one output.

To construct a CFDF actor that implements BDF semantics, we create a
mode that is dedicated to reading that input value, which we call the control
mode. The result of this examination sends the actor into either a true mode
or a false mode that corresponds to that control port. In the case of Switch,
this implies three modes with behavior described in Table 1. Note that a single
invocation of a Switch in BDF corresponds to two modes being invoked in the
CFDF framework. For a strict construction of BDF, only the Switch and Select
actors are needed for implementation, but CFDF does permit more flexibility,
allowing designers to specify arbitrary behavior of true and false modes as long
as each mode has a fixed production and consumption behavior.

Table 1. The behavior of the switch actor modes in terms of tokens produced and
consumed

mode consumes produces

Control Data True False

Control 1 0 0 0

True 0 1 1 0

False 0 1 0 1

6 Scheduling for a Heterogeneous Application

We use generalized schedule trees (GSTs) [17] to represent schedules generated
by schedulers in functional DIF. The GST representation is a generalization of
the (binary) schedule tree representation. The GST representation can be used
to represent dataflow graph schedules irrespective of the underlying dataflow
model or scheduling strategy being used. GSTs are ordered trees with leaf nodes
representing the actors of an associated dataflow graph. An internal node of the
GST represents the loop count of a schedule loop (an iteration construct to be
applied when executing the schedule) that is rooted at that internal node. The
GST representation allows us to exploit topological information and algorithms
for ordered trees in order to access and manipulate schedule elements. To func-
tionally simulate an application, we need only to be able to generate a schedule
for the application, and then traverse the associated GST to iteratively enable
(and then execute, if appropriate) actors that correspond to the schedule tree
leaf nodes. Note that if actors are not enabled, the GST traversal simply skips
their invocation. Subsequent schedule rounds (and thus subsequent traversals of
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the schedule tree) will generally revisit actors that were unable to execute in the
current round.

We can always construct a canonical schedule for an application graph. This
is the most trivial schedule that can be constructed from the application graph.
The canonical schedule is a single appearance schedule (a schedule in which
actors of the application graph appear once) which includes all actors in some
order. In terms of the GST representation, a canonical schedule has a root node
specifying the loop count of 1 with its child nodes forming leaves of the schedule
tree. Each leaf node points to a unique actor in the application graph. The
ordering of leaf nodes determines the order in which actors of the application
graph are traversed. When the simulator traverses GST, each actor in the graph
is fired, if it is enabled.

7 Design Example - Polynomial Evaluation

Polynomial evaluation is a commonly used primitive in various domains of sig-
nal processing, such as wireless communications and cryptography. Polynomial
functions may change whenever senders transmit data to receivers. The kernel
is the evaluation of a polynomial Pi(x) =

∑ni

k=0 ck × xk, where c1, c2, . . . , cn are
coefficients, x is the polynomial argument, and ni is the degree of the polyno-
mial. Since the coefficients may change at runtime, a programmable polynomial
evaluation accelerator (PEA) is useful for accelerating the computation of mul-
tiple Pi’s. To this end, we create a CSDF actor with two phases: reading the
polynomial coefficients and then processing a block of x’s to be evaluated.

To illustrate the problem of heterogeneous complexity, we suppose that a DSP
application designer might use two PEA actors customized for different length
polynomials. The overall PEA system is shown in Figure 1. Two PEA actors are
in the same application and made them selectable by bracketing them with a
Switch and a Select block. To manage the two PEA actors properly, this design
requires control to select the PEA1 or PEA2 branch. In this system, the CSDF
PEA actors consume a different number of polynomial coefficient tokens, so the
control tokens driving the switch and select on the datapath must be able to
create batches of 19 and 22 tokens, respectively for each path. If the designer
is restricted to only Switch and Select for BDF functionality, the balloon with
CONTROLLER shows how this can be done.

This design can certainly be captured with model oriented approach, pulling
the proper actors into super-nodes with different models. But like many designs,
this application has a natural functional hierarchy in it with the refinement of
CONTROLLER and with PEA1 and PEA2. We believe that competing design
concerns of functional and model hierarchy will ultimately be distracting for a
designer. With this work, we focus designers on efficient application representa-
tion and not model related issues.

Immediate simulation of the dual PEA application is possible to verify cor-
rectness by using the canonical schedule. We simulated the application with a
random control source and a stream of integer data. A nontrivial schedule tree
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Fig. 1. A pictorial representation of the PEA application

can significantly improve upon the canonical performance. Given that the prob-
ability of a given PEA branch being selected is uniform, we can derive a single
appearance schedule shown in Figure 2, where each leaf node is annotated with
an actor and each interior node is annotated with a loop count. Leaf nodes are
double ovals to indicate they are guarded by the enabling function. Figure 3
shows a manually designed multiple appearance schedule (a schedule in which
actors may appear more than once) that attempts to process polynomial coeffi-
cients first, before queuing up data to be evaluated, to reduce buffering.

Fig. 2. Single appearance schedule for the dual PEA system

Fig. 3. Multiple appearance schedule for the dual PEA system
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Table 2. Simulation times and max buffer sizes of the dual PEA design

Application Simulation Max observed buffer
style Schedule Time (s) size (tokens)

BDF Strict Canonical 6.88 2,327,733

BDF Strict Single appearance 1.72 1,729

BDF Strict Multiple appearance 1.59 1,722

CFDF Canonical 3.57 1,018,047

CFDF Single appearance 0.95 1,791

CFDF Multiple appearance 0.99 1,800

Results for these different styles of implementation with different schedules are
summarized by Table 2. We simulated 10,000 evaluations running on a 1.7GHz
Pentium with 1GB of physical memory. We measured the time it took to com-
plete enough iterations to complete all of the evaluations and maximum total
queue size. The manually designed schedules performed notably better than the
canonical schedule. Such insight can be invaluable when considering the final
implementation of the controller logic.

8 Conclusions and Future Work

In this work, we have presented a new dataflow approach to enable the descrip-
tion of heterogeneous applications that utilize multiple forms of dataflow. This
is based on a new dataflow formalism, a construction scheme to translate from
existing dataflow models to it, and a simulation framework that allows design-
ers to model and verify interactions between those models. With this approach
integrated into DIF package, we demonstrated it on the heterogeneous design of
a dual polynomial evaluation accelerator. Such an approach allowed us to func-
tionally simulate the design immediately and then to focus on experimenting on
schedules and dataflow styles to improve performance.

We plan to build on this work in a number of ways. First, support for parame-
terized dataflow modeling will permit more natural description of certain kinds
of dynamic behavior, without departing from strong dataflow formalisms. We
are also interested in more general scheduling techniques that can automatically
generate efficient schedules for such heterogeneous application. We believe the
profiling results supplied by functional DIF could also provide valuable informa-
tion for improving complex schedules automatically.
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Abstract. Daedalus is a system-level design flow for the design of multiprocessor
system-on-chip (MP-SoC) based embedded multimedia systems. It offers a fully
integrated tool-flow in which design exploration, system-level synthesis, applica-
tion mapping, and system prototyping of MP-SoC architectures are highly auto-
mated. In this paper, we describe Daedalus from a software perspective, explaining
its supporting software infrastructure and the way the various tools interoperate.
Moreover, we discuss the lack of support for achieving tool interoperability that we
have encountered during the development of Daedalus, and present several ideas
of future research directions to address this issue. More specifically, we argue that
a so-called Common Design Flow Infrastructure (CDFI) for system-level design
flows is needed to improve and stimulate research and development in the area of
system-level design methodology.

1 Introduction

The concept of system-level design of embedded systems, which raises the abstraction
level of the design process to cope with design complexity, has been around for more
than a decade now and has shown a lot of potential. Despite of this, system-level design
still involves a substantial number of challenging design tasks. This is especially true for
the design of MultiProcessor-SoC (MP-SoC) architectures, which become increasingly
popular target platforms for modern embedded systems. For example, applications need
to be decomposed into parallel specifications so that they can be mapped onto the mul-
tiple processing elements inside MP-SoC architectures [1]. Subsequently, applications
need to be partitioned into HW and SW parts since MP-SoC architectures often are het-
erogeneous in nature. To this end, MP-SoC platform architectures need to be modeled
and simulated to study system behavior and to evaluate a variety of different design
options. Once a good candidate architecture has been found, it needs to be synthesized,
which involves the synthesis of its architectural components as well as the mapping
of applications onto the architecture. To accomplish all of these tasks, a range of dif-
ferent tools and tool-flows is often needed, potentially leaving designers with all kinds
of interoperability problems. Moreover, there typically remains a large gap between the
deployed system-level specifications (or models) and actual implementations of the sys-
tem under study, known as the implementation gap [2]. Currently, there exist no mature
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methodologies, techniques, and tools to effectively and efficiently convert system-level
system specifications to RTL specifications.

Recently, we presented our Daedalus system-level design framework which addresses
the above design challenges [3,4,5]. Daedalus’ main objective is to bridge the afore-
mentioned implementation gap for the design of multimedia MP-SoCs. It does so by
providing an integrated and highly-automated environment for system-level architec-
tural exploration, system-level synthesis, programming and prototyping. The Daedalus
design flow, starting from sequential application to an implemented MP-SoC system on
an FPGA with a parallelized application mapped onto it, can be traversed in only a matter
of hours. Evidently, this offers great potentials for quickly experimenting with different
MP-SoCs and exploring design options during the early stages of design.

In this paper, we describe Daedalus from a software perspective, providing insight
of how the different tools in the design flow interoperate and describing the support-
ing tool infrastructure that improves the actual deployment of the design flow. More-
over, we discuss the lessons that we have learned from the development of Daedalus,
mostly recognizing the lack of support for achieving tool interoperability, and present
several ideas of future research directions to address this issue. More specifically, we
argue that a so-called Common Design Flow Infrastructure (CDFI) for system-level
design flows is needed, which surpasses ongoing efforts in this direction, in order to
improve and stimulate research and development in the area of system-level design
methodology.

The next section provides a birds-eye, conceptual overview of the Daedalus design
flow. Section 3 describes the software infrastructure of Daedalus, after which Section 4
discusses some of the lessons we have learned from Daedalus’ development. In Section 5,
we present several initial ideas about a Common Design Flow Infrastructure which aims
at significantly improving the process of developing system-level design flows. Section
6 describes related work, and Section 7 concludes the paper.

2 The Daedalus Design Flow

In Figure 1, the conceptual design flow of the Daedalus framework is depicted. As
mentioned before, Daedalus provides a single environment for rapid system-level archi-
tectural exploration, high-level synthesis, programming and prototyping of multimedia
MP-SoC architectures. Here, a key assumption is that the MP-SoCs are constructed
from a library of pre-determined and pre-verified IP components. These components
include a variety of programmable and dedicated processors, memories and intercon-
nects, thereby allowing the implementation of a wide range of MP-SoC platforms.

Starting from a sequential application specification in C, the KPNgen tool [6] allows
for automatically converting the sequential application into a parallel Kahn Process
Network (KPN) [7] specification. Here, the sequential input specifications are restricted
to so-called static affine nested loop programs, which is an important class of programs
in, e.g., the scientific and multimedia application domains. By means of automated
source-level transformations [8], KPNgen is also capable of producing different input-
output equivalent KPNs, in which for example the degree of parallelism can be varied.
Such transformations enable application-level design space exploration.
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Fig. 1. The Daedalus design flow

The generated or handcrafted KPNs (the latter in the case that, e.g., the input specifi-
cation did not entirely meet the requirements of the KPNgen tool) can subsequently be
used by our Sesame modeling and simulation environment [9,10] to perform system-
level architectural design space exploration. To this end, Sesame uses (high-level) ar-
chitecture model components from the IP component library. Sesame allows for quickly
evaluating the performance of different application to architecture mappings, HW/SW
partitionings, and target platform architectures. Such exploration should result in a num-
ber of promising candidate system designs, of which their specifications (system-level
platform description, application-architecture mapping description, and application de-
scription) act as input to the ESPAM tool [11,12]. This tool uses these system-level
input specifications, together with RTL versions of the components from the IP library,
to automatically generate synthesizable VHDL that implements the candidate MP-SoC
platform architecture. In addition, it also generates the C code for those application
processes that are mapped onto programmable cores. Using commercial synthesis tools
and compilers, this implementation can be readily mapped onto an FPGA for prototyp-
ing. Such prototyping also allows for calibrating and validating Sesame’s system-level
models, and as a consequence, improving the trustworthiness of these models.

3 Daedalus’ Software Infrastructure

Daedalus does not only consist of the three core tools KPNgen, Sesame and ESPAM,
but also features several supporting tools to improve the user-friendliness, and there-
fore also the deployability, of the framework. This section provides an overview of
Daedalus’ software infrastructure.
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Integrated RDBMS. In Daedalus, most design information (e.g., structural descrip-
tions of the application, architecture, and the mapping of the former onto the latter)
as well as experimental results are described using XML-based descriptions. Daedalus
therefore contains the Oracle Berkeley DB XML relational database management sys-
tem (RDBMS) to store all information (models, parameters and results) related to de-
signs and experiments. Daedalus also features a graphical user interface (GUI ) to this
RDBMS, which provides the designer with a powerful tool to e.g. explore and visualize
the large amounts of data generated by Daedalus’ design space exploration. Moreover,
it guarantees the reproducibility of experiments at all times.

Workflow control. The vision behind the Daedalus software infrastructure is that it
should be open for integration of new tools as well as that it should allow for cus-
tomization of the design flow. Therefore, the design flow (or tool flow) in Daedalus
is composable and constructed from ‘design flow blocks’. These design flow blocks,
which are illustrated as the dashed boxes in Figure 2, are the tools that take part in the
design flow together with their input- and output descriptions. The latter descriptions,
illustrated by the gray boxes in Figure 2, provide information about what input/output
data a tool consumes/produces and from/to where it reads/writes this data. This allows
us to describe a design flow as a simple composition of the design flow blocks, spec-
ified in the workflow description. For example, Figure 2 shows a design flow which
includes a visualization block to visualize Sesame’s DSE results and which stores both
the DSE and ESPAM’s prototyping results in the RDBMS (using the so-called ‘XML
saver’ tool). Evidently, this composability of the design flow allows for easily adding
new design steps to a design flow, as well as to customize design flows for specific
design domains.

Control and monitoring of MP-SoC prototypes on FPGAs. We have also developed
control and monitoring software utilities to facilitate the process of setting up and exe-
cuting experiments on the FPGA-based prototypes of MP-SoCs generated by Daedalus.
Such utilities are necessary and very useful for: (i) conducting an effective and efficient
design space exploration at implementation level of abstraction with 100% accuracy
on a narrow design space defined by Sesame; (ii) measuring real performance and cost
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numbers used for calibration of the Daedalus’ high-level architecture models [13]; (iii)
preparing real HW/SW demonstrators. The control and monitoring utilities include a
configuration manager, an execution control panel, and an on-line monitoring console,
all supported by a GUI which allows users, unfamiliar with the FPGA prototyping board,
to perform experiments with the MP-SoCs. The configuration manager is used to setup
the prototyping FPGA board for a given experiment. The execution control panel allows
to define and execute a sequence of instructions (e.g. initialize, start, stop, etc.) that con-
trol the interaction of the MP-SoC prototype with the surrounding environment (e.g. the
user). The on-line monitoring console displays and stores the data streams that go in and
out of the MP-SoC, the content of the status registers of the MP-SoC prototype, and the
content of timers and counters that measure the real performance of the prototype.

The Open Source philosophy of Daedalus. The entire Daedalus framework has been
developed as high-quality software distributed under Open Source licenses such as GPL
or CPL (see http://daedalus.liacs.nl/Site/Download.html). This
provides many advantages and opportunities (e.g., more easy take-up of the technol-
ogy since no expensive licenses are required, possible world-wide contributions to the
technology, etc.) but it also poses challenges related to software maintainability and
tool interoperability. For example, regarding the maintainability, we have developed a
configuration and installation utility for the whole Daedalus software framework. At a
glance, this task seems to be trivial but our experience shows that it is not, especially
when our goal is a fully automated installation process on all major Linux OS distribu-
tions. Daedalus consists of many tools that depend on other tools and libraries that have
to be installed because they are not available on all or some of the Linux distributions.
Identifying, documenting, and maintaining all these tool and library dependencies is a
continuous process.

4 Lessons Learned: The Tool Interoperability Problem

A central problem for any design flow addressing the development of embedded sys-
tems is that it typically consists of a number of tools that need to inter-operate with
each other for the design flow to be efficient and effective. From the experience with
Daedalus, we found that tool interoperability is a major problem, which consumes an
unnecessary amount of (software engineering) effort. In general, the lack of support
for achieving interoperability between tools is becoming one of the big showstoppers
for the much-needed productivity improvement in the embedded systems design area,
which may seriously endanger the ability to cope with the rapidly growing design com-
plexity. This lack of good tool-infrastructure is a problem that both concerns the embed-
ded systems industry as well as academia. Many research groups develop algorithms
and solutions for specific design problems and issues that are not (yet) addressed by
commercial tool providers. But since commercial tool providers often refrain from pub-
lishing interfaces to their tools, research groups are typically left with the only option
of building tool support for the whole design flow themselves, including very basic el-
ements such as editors, graphical UI’s, etc. Daedalus was no exception here. Also since
there is no common well-defined notion of tool infrastructure, research groups find it
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often difficult to cooperate on tool research and development. The flow of ideas from
academia to industry is also made more difficult, because it is difficult to deploy new
algorithmic innovations into industrial design flows since the tools are not interoperable
in any reasonable way.

Moreover, there do not exist good standard case studies and benchmarks for system-
level design. We believe that this is due to the fact that (too) much effort is spent on
the tool-building part of system-level design research projects instead. This tool devel-
opment typically involves a significant (software) engineering effort, at the cost of the
scientific content of such projects. With a tool infrastructure that fosters the re-use of
design tools, this effort could be redirected to the development of good benchmarks and
case studies. This would invigorate design flow research as it enables the comparison of
research results. Currently, such a comparison of the various achievements in system-
level research is not or hardly possible. Finally, we believe that good benchmarks and
case studies will provide profit to the flow of ideas from academia to industry, because
the design flow improvements can be demonstrated on industrially relevant examples,
thus making them much more realistic.

5 Towards a Common Design Flow Infrastructure

To address the tool interoperability problem in system-level design flows, we argue
that it is highly desirable to have a tool infrastructure that supports system-level design
flows. This infrastructure, which should go beyond efforts such as OCP-IP [14] and
SPIRIT’s IP-XACT [15], would be a kind of meta-tool for developing system-level
design flows, having design flow steps as “plug-ins”. This requires the definition of
standardized tool, model and data descriptions and file formats to allow the interchange
of information between the framework and external tools (i.e., plug-ins). Moreover, the
framework should also allow for explicitly defining design flows. This will make it
possible to build pre-packaged standardized or customized design flows.

This Common Design Flow Infrastructure (CDFI), that should facilitate the construc-
tion and/or adaptation of complex system-level design flows, is conceptually shown in
Figure 3. Central to the CDFI is a repository on which all participating tools operate
and in which the key elements of system-level design flows (such as application speci-
fications, application and architecture models in various models of computation and at
various levels of abstraction, input/output data, simulation results, IP blocks, etc.) are
stored in a structural manner. The tools that participate in the CDFI and operate on its
repository could either directly belong to the implemented design flow, or have a more
supporting role such as translators that, e.g., perform model refinement or translation
between models specified in different models of computation.

For each tool that wishes to participate in the flow and thus operate on the CDFI
repository, one needs to formally specify its preconditions and input requirements, its
semantics, and its postconditions and output specification. To give a few examples,
please consider Figure 3. Here, the input/output specification for a tool like KPNgen
[6] could specify that it requires “sequential static affine nested loop programs” as in-
put, and produces parallel specifications in the form of Kahn Process Networks (KPNs)
[7]. Naturally, such specifications need to be formalized and should be based on a model
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with clear denotational semantics. Subsequently, for a DSE tool like Sesame [9], it must
be specified that it needs application models in the form of KPNs and generates a mul-
titude of performance metrics for a range of architectural implementation instances.
Finally, for a visualization tool it may be specified what performance metrics it needs in
order to perform post-mortem or run-time visualization of these data. This also means
that the output of tools as well as the input parameters must be structurally stored (i.e.,
described using meta-data) in the CDFI repository in order to allow other tools (such
as visualizers) to relate these data, e.g., visualizing cycle-counts, component utilization,
etc. for simulation runs with different input parameters. Moreover, we also need to for-
mally relate the already existing models in the CDFI with the models used by any new
tool. This specification will show if and how the new tool can be used in combination
with other tools in a CDFI-based design flow.

To actually allow for interoperability between different plug-in tools, these tools
must have a common understanding of the exact semantics of the CDFI repository
elements (e.g., models, data, IP components) they use. This requires standardization
with respect to the specification of these repository elements. For example, standard-
ized model specifications (i.e. metamodels) should provide the means to formally relate
models and to perform model translations (e.g., via a plug-in translator tool) when re-
quired. Essentially, we are looking for a type-system for the tools and their models, in
which for example model translations can be seen as type casts. Clearly, developing
methods for describing the semantic and input/output behavior of tools as well as for
specifying the elements used by these tools (e.g., data, models, IP components) – all
with the aim of tool interoperability in mind – is still a formidable research challenge.
Evidently, for the actual implementation of the CDFI, existing software technology
from e.g. the Model Driven Architecture (MDA) domain could be exploited.
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So far, we have only described the CDFI from the perspective of individual tools. In
addition, a coordination framework is needed that coordinates the control- and dataflow
between the different tools that take part in the design flow. In other words, this co-
ordination framework basically specifies a projection of the implemented design flow
on top of the generic CDFI repository and associated tools. Because we explicitly sep-
arate the tools and tool specifications (semantic and input/output description) on one
hand, and the coordination of the tools to form a specific design flow on the other hand,
it should be fairly easy to construct new design flows by re-using tools, extend a de-
sign flow, and/or substitute certain tools in a design flow with other tools. Evidently,
the development of such a coordination framework (accounting for the specification of
control- and dataflow between the different tools in the flow in a generic and flexible
manner) also requires substantial research, which could e.g. be inspired by the exten-
sive research that has been performed on workflow frameworks in the domain of Grid
Computing and eScience (e.g., [16]).

6 Related Work

Systematic and automated application-to-architecture mapping has been widely stud-
ied in the research community. The closest to our work is the Koski MP-SoC design
flow [17]. Koski also provides a single infrastructure for modeling of applications, au-
tomatic architectural design space exploration, and automatic system-level synthesis,
programming, and prototyping of selected MP-SoCs. But unlike Daedalus, Koski does
not allow for parallelization of applications, nor design space exploration at application
level. Koski requires applications to be specified by hand in UML. The Abhainn de-
sign framework [18] has similar objectives as Daedalus, but appears to lack automation
for several design steps, such as automated parallelization of applications (applications
are modeled using multidimensional arrayed synchronous dataflow specifications), au-
tomated design space exploration, and full-fledged MP-SoC synthesis. Other examples
of related work can be found in [19,20,21,22]. However, these efforts are limited to
processor-coprocesor architectures [19], only provide a limited degree of automation
[20,21], or do not provide an automated step towards the register transfer level [22].

Companies such as Xilinx and Altera provide design tool chains attempting to gen-
erate efficient implementations starting from descriptions higher than (but still related
to) the register transfer level of abstraction. The required input specifications are still so
detailed that designing a single processor system is still error-prone and time consum-
ing, let alone designing alternative multiprocessor systems. In contrast, Daedalus raises
the design to an even higher level of abstraction allowing the exploration, design and
programming of multiprocessor systems in a short amount of time.

With respect to our CDFI ideas, there are a number of related efforts. OCP-IP [14] is
an industrial/academic initiative dedicated to proliferating a common standard for intel-
lectual property (IP) core interfaces, or sockets, that facilitate ”plug and play” System-
on-Chip (SoC) design. Similarly, the SPIRIT consortium [15] aims at ”Enabling
Innovative IP Re-use and Design Automation”. It has defined an XML schema (called
IP-XACT) for meta-data that documents the characteristics of IP required for the au-
tomation of the configuration and integration of IP blocks as well as APIs to make this
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meta-data directly accessible to automation tools. Both the OCP-IP and SPIRIT initia-
tives focus on standardization with respect to IP blocks, while CDFI goes beyond that
by targeting integration and standardization of not only IP blocks but also design tools
and tool-flows that cover all aspects of the system design automation. The MoBIES ini-
tiative [23] studies model-driven approaches (or model-integrated approaches) to design
flows. The goal is to develop new methods and tools that will increase the productivity
of the designers. In a sense, the goal is the same as in the CDFI, but the means are dif-
ferent. The CDFI aims at increasing productivity by taking away the bottleneck caused
by bad tool interoperability, whereas MoBIES tries to find new ways (i.e. methods) to
build embedded systems. The CDFI approach is method neutral, it should increase the
productivity of any method.

7 Conclusions

In this paper, we presented our Daedalus system-level design framework for multime-
dia MP-SoCs from a software perspective, describing how its tools interoperate and
discussing the supporting tool infrastructure that improves the actual deployment of the
design flow. We also discussed the lack of support for achieving tool interoperability
that we have encountered during the development of Daedalus, and presented several
initial ideas of future research directions to address this issue. More specifically, we
argued that a so-called Common Design Flow Infrastructure (CDFI) for system-level
design flows is needed, which surpasses ongoing efforts in this direction, in order to
improve and stimulate research and development in the area of system-level design
methodology. Such a CDFI would, among other things, heavily reduce the software
engineering overheads in system-level design flow projects, enable the comparison
of design methodologies/techniques between researchers, and enhance the knowledge
transfer from research to industry.
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Abstract. This paper evaluates an ASIP design methodology based on
the extension of an existing instruction set and architecture described
with LISA 2.0 language. The objective is to accelerate the ASIPs design
process by using partially predefined, configurable RISC-like embedded
processor cores that can be quickly tuned to given applications by means
of ISE (Instruction Set Extension) techniques. A case study demonstrates
the methodological approach for the JPEG algorithm.

Keywords: LISATek, ASIPs, JPEG, Customized Instructions.

1 Introduction

An ASIP is an hardware architectural concept meant to fill the gap between
ASICs (Application Specific Integrated Circuits) and DSPs (Digital Signal
Processors). The formers are highly efficient but lack flexibility. On the other
hand, software development on DSPs provide reusable and programmable solu-
tions with less performance and energy inefficiency as compared to ASICs [1].
An ASIP is a microprocessor specialized for a given set of algorithms. By spe-
cialized, we mean that its instruction set is designed from scratch or extended
from a known microprocessor. There may be two approaches to design ASIPs.
The first approach is to design from scratch: an entirely new instruction set is
specifically designed for the target application [10]. The second approach is to
customize the instruction set of an existing general purpose partially predefined
configurable processor [8] [14] [17]. In this paper, we have designed ASIPs by
extending the instruction set of a 32-bit RISC processor. By partially sacrificing
silicon efficiency, configurable processors make ASIPs design more incremental
and less complex, since both the hardware architecture and software tools are
partially predefined [15].

The main contribution of this paper is to evaluate the LISATek ASIP toolkit
(from CoWare) [3] [4] [5]. We show that how LISATek assists an ASIP design
process by automatically generating the software tool suite (compiler, assembler,
linker, simulator) as well as the RTL (Register Transfer Level) description of the
designed processor. As a starting point for model creation LISATek provides
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a library of sample models which contains processors for different architecture
categories like VLIW (Very Large Instruction Word), SIMD (Single Instruction
Multiple Data), RISC (Reduced Instruction Set Computer). We extend the in-
struction set of a 32-bit RISC processor. The reason of 32-bit RISC core selection
is the observation that many ASIPs tend to have a RISC-like core architecture
and ISA (Instruction Set Architecture) [8]. The well-known JPEG image com-
pression standard serves as case study [12].

The rest of the paper is organized as follows: Section 2 introduces the eval-
uation methodology for LISATek design flow starting from the sample model.
Section 3 describes ASIPs design for JPEG algorithm. Section 4 provides simu-
lation and synthesis results. Section 5 comments on strengths and weaknesses of
LISA-based design methodology. Section 6 describes related work and section 7
concludes the paper.

2 Evaluation Methodology for LISATek Design Flow

To evaluate LISATek, we propose the following ASIP design methodology:

– The design flow starts by writing the application specifications in a high
level language like C.

– Application specifications written in C are profiled to identify critical parts
of the application. Criticality refers to computational intensive parts of the
application.

– Customized instructions are identified for critical parts of the application
to increase computational performance. These customized instructions are
application specific instructions with a higher complexity than generic in-
structions like ADD, SUB, etc. We further explain this identification step in
the paper.

– Customized instructions are integrated into a LISATek predefined config-
urable processor template to speed up the application.

– Customized instructions are functionally verified and simulated using an
adequate instruction set simulator (ISS) generated by LISATek [3] [5]. The
simulation also makes it possible to calculate the application speedup in
terms of cycle counts.

– After simulation, an RTL HDL model (VHDL or verilog) of target archi-
tecture is generated by LISATek from the corresponding LISA description.
It triggers hardware synthesis process via standard logic synthesis tools. As
a result, maximum clock rate and silicon area overhead is obtained for the
selected CMOS target library.

2.1 Presentation of the Toolkit: Coware LISATek

The LISATek-based processor design flow [3] [5] covers all phases of the design
process from algorithmic specification of the application down to implementation
of the micro architecture. It improves flexibility of modeling target architectures
and significantly reduces description efforts. It provides high level of flexibility to
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facilitate the description of various processors, such as SIMD, VLIW and RISC
type architectures. To describe ASIPs, LISATek is based on a language called
LISA 2.0. LISA offers two main features:

– The description of the ASIP structure: registers, pipeline structure, instruc-
tion set binary coding, instruction set syntax, etc.

– The description of the behavior of each instruction. This behavior is de-
scribed with a pseudo C language.

Two main development phases of the LISA 2.0 based design flow are (1) architec-
ture exploration phase and (2) architecture implementation phase. These phases
are iterative and repeated until a best fit between selected architecture and tar-
get application is obtained. Every change to architecture specification requires
a completely new set of software development tools. (i.e. C compiler, assembler,
linker, simulator). This iterative exploration approach demands very flexible, re-
targetable software development tools to optimize computational performance,
flexibility and silicon area.

2.2 Sample Architecture: 32-bit RISC Processor

LISATek provides a library of sample models for different architectural cate-
gories. Our case study relies on the LISATek 32-bit RISC processor. The sample
architecture has following characteristics:

1. 32-bit instructions with five stage pipeline. (FE, DC, EX, MEM, WB)

(a) FE: To fetch instructions from memory.
(b) DC: To decode instructions for the next stages (EX, MEM, WB).
(c) EX: To execute operations.
(d) MEM: To store results in memory.
(e) WB: To write results back into registers.

2. Sixteen 32-bit general purpose registers.
3. PC register, Status registers, Pipeline registers and Bypass registers.
4. Six functional units (ALU , Control, DSP, LDST, Shifter and Writeback).

(a) ALU: To perform arithmetic and logical operations.
(b) Control: To perform branching operations.
(c) LDST: To perform load and store operations.
(d) Shifter: To perform shift operations.
(e) DSP: To perform DSP oriented operations.
(f) Writeback: To perform write back operations.

The sample architecture has already a minimal instruction set. There are four
types of instructions: Arithmetic and Logical instructions, Branch instructions,
Compare instructions and Load/Store instructions.
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3 Case Study: ASIP Design for JPEG Algorithm

To evaluate the strength of LISATek toolkit for ASIP designing, we have designed
different ASIPs with different instructions set for the same JPEG algorithm.
JPEG is a general purpose compression standard for still-image applications.
The key functional blocks for JPEG compression are FDCT (Forward Discrete
Cosine Transform), Quantization and Entropy Encoding while key functional
blocks for JPEG Decompression are IDCT (Inverse Discrete Cosine Transform),
Dequantization and Entropy Decoding.

3.1 Application Specification and Profiling Results

The starting point of our design process is a profile step. To perform that pro-
filing, we consider an open source C implementation of the JPEG algorithm [9].
The application code is profiled using the gprof GNU profiler [7] on a Pentium
machine. Profiling results show that FDCT and quantization are the most com-
putational intensive parts for compression, while IDCT and dequantization are
the most computational intensive parts for decompression. There are many al-
gorithms to compute DCT and IDCT [18]. However, 1 D LLM algorithm [16]
computes DCT and IDCT with minimum number of operations. The flow graph
of the 1 D (8 point) LLM algorithm is shown in figure 1.

In figure 1, dots represent additions or subtractions. Hollow circles represent
multiplication by a number. Rectangular boxes represent rotation and its compu-
tational cost is 4 multiplications and 2 additions. There are 4 stages in the LLM
algorithm for DCT computation. Stage 1 consists of 8 additions/subtractions.
In Stage 2, the algorithm splits into two parts. One part is for even coefficients
(only additions and subtractions) and the second part is for odd coefficients (ro-
tations). Stage 3 again splits into even and odd parts. The signal flow graph of
LLM algorithm for forward and inverse DCTs are mirror images of each another.

3.2 Customization of Sample Model for JPEG

The LISATek RISC processor sample model is provided with an already-defined
instruction set. We extend this instruction set by identifying and implementing
customized instructions. These dedicated (customized) instructions are identi-
fied to accelerate the computational intensive parts of the application. However,
an important challenge for these customized instructions is to accelerate the exe-
cution of computational intensive parts while being flexible enough to accommo-
date variations in the algorithm. There are large number of possible instruction
set extensions and each set of extensions describes various levels of trade-offs
between flexibility and efficiency. In this paper, we describe only one possible set
of instruction set extension.

3.3 Data Memory Organization

To evaluate the efficiency of customized instructions, the following data memory
organization is defined for each input image block.
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Fig. 1. LLM Algorithm Flow Graph for DCT Computations

TmpAddress is used to store partial DCT results and is calculated as:
TmpAddress = (BaseAddress + 64)
Quantization table address Tabaddress is calculated as:
TabAddress = (TmpAddress + 128)
CoefAddress shows the starting address of quantized DCT coefficients.
CoefAddress = (TabAddress + 128)

FDCT and Quantization is performed in two steps: First 8x8 block is loaded
from memory, 1 D DCT is performed and temporary results are stored into mem-
ory. Then these temporary results are retrieved back from memory to compute
1 D DCT column wise, and quantize the results before storing them in memory
and so on.

3.4 Customized Instructions

Stage 1 of the LLM algorithm shown in figure 1 loads 8-bit pixels from data
memory. This stage outputs 16-bit data. All the subsequent stages (stage 2,
stage 3, stage 4) work with 16-bit data input and output. On the basis of the
LLM algorithm flow graph and selected memory organization, we have explored
various possible instruction set extensions. One possible set of instruction set
extension is presented hereafter.
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– DCT01ROW Rsrc1, Rsrc2 computes DCT stage 1 of the LLM algorithm.
It computes 08 additions/subtractions. It takes two source operand registers
(Rsrc1, Rsrc2 ) and returns results in the registers which are implicitly de-
fined inside the definition of this instruction. The use of implicit registers is
due to the 32-bit instruction set restriction.

– DCT02 Rdst1, Rdst2, Rsrc1, Rsrc2 computes DCT stage 2 of the LLM
algorithm. It takes input from two source registers (Rsrc1, Rsrc2 ) and re-
turns results in two destination registers (Rdst1, Rdst2 ).

– ADDEVEN Rdst1, Rdst2, Rsrc1, Rsrc2 computes upper part in stage 2
and lower parts in stage 3.

– DCTEVEN Rdst, Rsrc computes upper part in stage 3 of the LLM al-
gorithm.

– DCTODD Rdst, Rsrc1, Rsrc2, Rsrc3 computes DCT computations in
stage 4.

– QUANTIZE Rdst, Rsrc1, Rsrc2 computes quantization. First source
register stores 2 DCT coefficients (16 bit data). Second source register stores
2 quantization factor (16 bit data). It takes DCT coefficient to be quantized
from first register and takes quantization factor from second source register,
performs the quantization and stores the result in Rdst.

3.5 Architecture Modifications

In order to implement customized instructions, LISA offers the possibility to
either put the new instructions in a new Functional Unit or in (modified) existing
Functional Units. In this paper, customized instructions are implemented by
modifying existing Functional Units. The reason is that the sample architecture
already contains some local registers in existing Functional Units that we can
reuse for our purpose. Indeed, the creation of a new Functional Unit implies
the creation of new local registers: already available local registers could not be
reused. However, even in the existing Functional Units, some additional local
registers are needed to implement the customized instructions. Thus, we have
added nine 32-bit registers and fourteen 16-bit registers. In order to execute
customized instructions in pipeline, additional pipeline registers are also needed.
We have added ten 32-bit registers and four 8-bit registers to pass data between
pipeline stages.

3.6 Generation of HDL Code

The LISATek Processor Generator [4] [3] tool allows the designer to automatically
create an implementation model of the target architecture modelled in LISA 2.0
language. The output of the Processor Generator is VHDL or VeriLog code,
which can be processed by standard synthesis tools.

4 Experimental Results

The following experiments have been performed to evaluate the relevance of the
proposed LISA-based design flow.
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4.1 Simulation Results with Native Instructions

To compute 2D DCT of one input block with only the native instructions of
the sample model, 640 cycles are required. Similarly 128 cycles are needed to
compute quantization for one input image block of size 8x8. In addition to this,
some cycles are consumed in loading pixels from memory, loading quantization
coefficient from memory, storing and loading partial results to and from mem-
ory respectively and storing quantized DCT coefficients in the memory. It has
consumed additional 240 cycles for one input block. Hence total number of con-
sumed cycles are 640+128+240 = 1008. Computational cost for IDCT and
dequantization is same as that of FDCT and quantization.

4.2 Simulation Results with Customized Instructions

To compute 2D DCT of one input block with our ASIP (i.e. customized in-
structions), 192 cycles are needed. 240 additional cycles are required to compute
one input block. So total number of consumed cycles are 192+240 = 432.
Computational cost for IDCT and dequantization is same as that of FDCT and
quantization.

The designed architecture is not specialized for this application only. The
customized instructions are reusable even if we change the DCT algorithm. Also,
some of the instructions could also be reused for other algorithm (For example
FFT algorithm).

4.3 Summary of Simulation Results

– The speedup due to new instructions is: Speedup = 1008/432 = 2.33.
The speedup is obtained at the cost of silicon area. The increase in area is
due to the additional pipeline registers and local registers.

– 2.33 is not the maximum possible speedup. The computational efficiency of the
designed architecture (Minimum cycle counts) can be increased at the cost of
silicon area (additional registers) and flexibility (More specific towards a single
application) demonstrating the trade-off between re-usability and efficiency.

– The entire design flow for the processor is performed beginning from the func-
tional description of the application down to the hardware implementation
within three man-weeks. This time also includes the creation of architecture
simulators and production quality software development tools. This short
development time demonstrates effectiveness of the design flow.

4.4 Synthesis Results

We have performed logic synthesis by means of Cadence Encounter RTL Com-
piler using a standard cell CMOS 0.13. The target frequency is 200MHz while
external input and output delays are 2.5 ns.

The processor model instantiates three main subblocks: PipeLine, RegisterFile
and Memories. The simulation memories are replaced with technology specific
vendor memories.
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Synthesis results for the entities Pipeline and RegisterFile are combined to
get total area which is 42.5 k-gates at 160 MHz maximum frequency. For JPEG
application, the minimum memory needs are:

– Program memory: The minimum size of program memory is the size of ASM
code (assembly code) for the application.

– Data memory: The minimum size of required data memory depends on the
size of stored image in memory.

5 LISATek Evaluation

5.1 Strengths of LISATek

– As a starting point of model creation LISATek provides a library of sample
models which contains processors for different architecture categories. Taking
such model as basis has a major advantage to directly have compiler support
for the architecture due to the existence of an instruction set. This removes
the entry barrier usually caused by new modeling languages and tools.

– It is quite easy to list a set of resources (memory, buses, registers). Operations
aredescribed inahierarchicalway,which facilitates reusabilityandmodularity.

– Step by step simulation is quite useable.
– The toolkits Processor Designer and Processor Debugger [4] [5] creation have

a good graphical user interface thus offering ways to design and debug the
processor before the generation of its hardware description.

5.2 Weaknesses of LISATek

– Although toolkit Processor Designer and Processor Debugger has a good
graphical user interface but design methodology still lacks the large degree
of automation as compared to its counterpart like Tensilica [8] that has more
automated approach.

– The LISA language analyzer is quite limited. It means that description errors
may occur when compiling the simulation environment. In that case, we must
understand gcc errors to correct the LISA description.

– Although VHDL code can be automatically generated from LISA source
code by Processor Generator but generation process showed many errors in
the generated VHDL code. So we have to modify the LISA code in order to
remove those errors.

– LISATek profiler [6] provides detailed processor specific information. How-
ever, it is bound to specific architectures and not suitable for performance
estimation in a general, target processor independent way. In [13], a tool has
been propsed that estimates the cycles counts and memory profiles. However,
it does not extract inherited spatial parallelism present in the application.

– Coarse grain reconfigurable architectures are getting more and more popu-
lar in the domain of embedded systems. Currently, LISATek based design
methodology has no notion for modeling this class of architectures. The re-
cent work in this regard is [2]. But it describes only fine grain reconfigurable
architecture with static reconfiguration.
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6 Related Work

The Xtensa [8] environment from Tensilica is built upon a choice between el-
ements from a predefined set of hardware components which can be adapted
to the user requirements. For this reason the design space exploration can be
performed efficiently but the designer has not the flexibility of modeling arbi-
trary ASIPs. The PEAS-III [14] generates not only HDL (Hardware Description
Language) descriptions but the target compiler and target assembler as well.
However, it works with a set of predefined components which limits the resulting
flexibility in modeling arbitrary processor architectures. The EXPRESSION[11]
language allows the cycle-accurate processor description. It provides the mech-
anism for capturing the information needed to support ADL (Architecture De-
scription Language) based design space exploration and software toolkit gen-
eration methodology. However, currently there is no information whether the
implementation step can be done based on this language.

None of the introduced approaches provides the designer with efficient design
exploration and implementation capabilities coupled with the required flexibility
for the development of arbitrary ASIPs. In this paper, LISA 2.0 based design flow
is evaluated to address these issues. We have used a manual approach where cus-
tom instructions are identified by the user after profiling. However, the readers
are referred to a more automated approach in [17]. In this automated approach
advanced profiling tools are used such that custom instructions are not iden-
tified by the user but generated automatically from the application code. For
Customized instructions implementation, [17] relies on CorXpert (from Coware)
tool. CorXpert is a graphical tool for capturing CI (Customized Instructions) of
configurable processors.

7 Conclusions and Future Work

This paper evaluates LISA 2.0 based methodology to design ASIPs for multime-
dia applications. We have designed a processor architecture with an extended
instruction set based on the profiling results. As far as area overhead and speedup
are concerned, our solution is somewhere between pure software implementation
and full custom designed ASIPs. Our case study has explored different types of
ASIPs for JPEG algorithm.

A major disadvantage of our approach is the lack of automation in identifying
the customized instructions. Design time can be significantly reduced to few
hours by making this process automatic. Future work may be the modeling of
further real world processor architectures while focusing on the evaluation of
efficiency of both the generated RTL code and the efficiency of retargetable C
compiler.

Acknowledgments. This work has been sponsored by Texas Instruments Inc.
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Abstract. Array-OL specification model is a mixed graphical-textual language
designed to model multidimensional intensive signal processing applications.
Data and task parallelism are specified directly in the model. High level trans-
formations are defined on this model, allowing the refactoring of an applica-
tion and furthermore providing directions for optimization. The resemblances
between with the wide-known and used Loop transformations lead us to try taking
concepts and results from this domain and see how they fit in Array-OL context.

Keywords: Multidimensional Dataflow, optimizations, loop transformations.

1 Introduction

In the last years, the gap between the performances claimed by the constructors and the
ones achieved with real code has drastically increased. This is caused mainly by the
brutal increase in processor complexity which brought with it a drastic degradation of
the code generated by the compilers. The three major directions for improving the per-
formances are: (1) increasing the instruction parallelism while multiplying the mecha-
nism to allow the simultaneous execution of instructions; (2) improving the speculative
mechanisms that allow the prediction of programs local behavior; (3) the implemen-
tation of a complex memory hierarchy for exploiting as well as possible the time and
space data locality.

For all these directions, the source-to-source transformations techniques have a de-
terminant role. Most of these techniques are represented by transformations applied on
“for” loops which are efficient in the case of code that contains extremely regular data
treatment.

Array-OL (Array Oriented Language) is a modeling language designed in order to
conform to the needs for specification, standardization and efficiency of the multidi-
mensional systematic signal processing [2]. This application domain is characterized
by systematic, regular, and massively data-parallel computations. Array-OL relies on a
graphical formalism in which the signal processing appears as a graph of tasks. Each
task reads and writes multidimensional arrays in an extremely regular pattern.

In this paper we try to make a comparison between loop transformations and the
Array-OL transformations, identify the resemblances and directions for using results
from loop transformations optimization techniques to Array-OL.

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 187–196, 2008.
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2 Loop Transformations

An important early system level technique, the loop transformation technique, is aiming
at improving the data access regularity and locality. Hence it reduces the overall mem-
ory size requirement and the access frequency to big and slow memories. This is vital
to area, power consumption, and performance. Improved data access regularity and lo-
cality shorten the lifetimes of data elements and increases the memory location reuse
ratio since memory locations can be reused for data elements with non-overlapping
life-times.

Methods are divided into two classes: global methods which deal with each loop
as atomic computation unit and local methods which change the way loops are orga-
nized internally. Here is a list of some of the global transformations that are useful for
optimization. Global methods:

– Code moving that changes the execution order between two loops in the program
without modifying the loops.

– Loop fusion that groups several loops in a unique one, used to reduse the size of
intermediate arrays.

– Loop splitting that represents the reverse of merging. It attempts to simplify a loop
or eliminate dependencies by breaking it into multiple loops which iterate over
different contiguous portions of the index range.

Local transformations explore more in depth the way loops are organized internally:

– Loop tiling acts on partitioning of large array into smaller blocks, thus fitting ac-
cessed array elements into cache size, enhancing cache reuse and reducing cache
size requirements.

– Loop pipelining shifts some instructions from one to several iterations within the
loop body. This is used to increase to data locality.

– Loop collapsing is the reverse of tiling.

These transformations usually are combined in order to achieve best performances.
As an observation, these are just some of the existing loop transformations; the most
common we could say.

2.1 Loop Optimization Techniques

Typically, applying a compiler optimization consists of three steps: decide upon a part
of the program to optimize and the enchainment of transformations to be applied; verify
the correctness of the optimization; and last, applying the transformations. As processor
architectures become more and more complex, the number of dimensions in which
optimizations are possible increase and this makes the decision process very complex.

The complexity of optimization algorithms is the reason why many compilers still
use heuristics. This implies basically the use of the same chain of transformations, the
one that proves to reach a relatively good result in most of the cases.

The complexity of the problem determined the need to introduce ways of repre-
senting the problem (constrains, transformations, cost function) using a more effective
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formalism and which could facilitate the manipulation of concepts like correctness, data
dependencies, cost function. Some approached the problem using Linear Algebra [4],
Polyhedral Abstraction [6], graph theory algorithms or Integer Linear Programming [5].
The introduction of formalism is extremely important for the decision part of the op-
timization. Correct and complex optimization algorithms need to be designed around
such formalisms.

3 Array-OL Model of Specification

The initial goal of Array-OL is to give a mixed graphical-textual language to express
multidimensional intensive signal processing applications. These applications work on
multidimensional arrays and their complexity does not come from the elementary func-
tions they combine, but from their combination of the ways they access the interme-
diate arrays. As these applications handle huge amounts of data under tight real-time
constraints, the efficient use of the potential parallelism of the application on parallel
hardware is mandatory.

3.1 Principles

Form these needs, we can state the basic principles that underly the language:

– Array-OL is a data dependence expression language. Only the true data dependen-
cies are expressed in order to express the full parallelism of the application.

– Data access is done through sub arrays, called patterns.
– The language is hierarchical to allow descriptions at different granularity levels and

to handle the complexity of the applications.
– All the potential parallelism in the application should be available in the specifica-

tion, both task parallelism and data parallelism.
– It is a single assignment formalism.
– The spatial and temporal dimensions are treated equally in the arrays.
– The arrays are seen has tori.

The semantics of Array-OL is that of a first order functional language manipulating
multidimensional arrays. It is not a data flow language but can be projected on such a
language.

The usual model for dependence based algorithm description is the dependence
graph where nodes represent statements and edges dependencies. In order to represent
complex applications, a common extension of these graphs is the hierarchy. Array-OL
builds upon such hierarchical dependence graphs and adds a special kind of node to
represent the data-parallelism of the application: repetition nodes.

Formally, an Array-OL application is a set of components connected through ports.
The components are equivalent to mathematical functions reading data on their input
ports and writing data on their output ports. The components are of three kinds: ele-
mentary, compound and repetition. An elementary component is atomic (a black box).
A compound is a dependence graph whose nodes are components connected via their
ports. A repetition is a component expressing how a single sub-component is repeated.
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All the data exchanged between the components are arrays. These arrays are multidi-
mensional and are characterized by their shape, the number of elements on each of their
dimension. Each port is thus characterized by the shape and the type of the elements of
the array it reads from or writes to.

3.2 Tasks Parallelism

For a better understanding, in the rest of the study we will use to illustrate the Array-OL
concepts on an application that scales an high definition TV signal down to a standard
definition TV signal, called downscaler. Both signals are represented as a three dimen-
sional array; the first two dimensions represent the frame resolutions (1920 × 1080 at
the input and 720 × 480 at the output) while the third represents the flow of frames (in
time). The application’s task dependence is presented in Figure 1. The application is
constituted from two filters, the horizontal and the vertical filter.

Horizontal Filter
(1920, 1080,∞)

(720, 1080,∞)

Vertical Filter
(720, 1080,∞) (720, 480,∞)

Fig. 1. Downscaler application – task dependence

Each execution of a task reads one full array on its inputs and writes the full output
arrays. The graph is a dependence graph, not a data flow graph.

3.3 Data Parallelism

A data-parallel repetition of a task is specified in a repetition task. The basic hypothesis
is that all the repetitions of this repeated task are independent. They can be scheduled
in any order, even in parallel1. The second one is that each instance of the repeated task
operates with sub-arrays of the inputs and outputs of the repetition. For a given input
or output, all the sub-array instances have the same shape, are composed of regularly
spaced elements and are regularly placed in the array. This hypothesis allows a compact
representation of the repetition and is coherent with the application domain of Array-
OL which describes very regular algorithms.

As these sub-arrays are conform, they are called patterns. In order to give all the
information needed to create these patterns, a tiler is associated to each array (ie each
edge). A tiler is able to build the patterns from an input array, or to store the patterns
in an output array. It describes the coordinates of the elements of the tiles from the
coordinates of the elements of the patterns. It contains the following information:

1 This is why we talk of repetitions and not iterations which convey a sequential semantics.
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– F: a fitting matrix.
– o: the origin of the reference pattern (for the reference repetition).
– P: a paving matrix.

The shapes of the arrays and patterns are, as in the compound description, noted on
the ports. The repetition space indicating the number of repetitions is defined itself as
an multidimensional array with a shape. Each dimension of this repetition space can be
seen as a parallel loop and the shape of the repetition space gives the bounds of the loop
indices of the nested parallel loops.

In the downscaler application, each of the two filters has a repetitive functionality, so
this means we can represent them by using repetition components. Thus the complete
representation is presented in Figure 2.
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Each of the filter has a repetitive functionality that is described with the tilers. For example,
the horizontal filter’s elementary component takes a window of 13 elements that slides with 8
elements on each line of each image frame and produces 3 elements.

Fig. 2. Complete specification of the downscaler application

Returning now to the Array-OL specifications, for each repetition, one needs to de-
sign the reference elements of the input and output tiles and the elements of these tiles.
The reference elements of the reference repetition are given by the origin vector, o, of
each tiler. The reference elements of the other repetitions are built relatively to this one.
Their coordinates are built as a linear combination of the vectors of the paving matrix
as follows

∀ r, 0 ≤ r < srepetition, refr = o + P × r mod sarray (1)
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where srepetition is the shape of the repetition space, P the paving matrix and sarray the
shape of the array. The elements of the tile of repetition r are built relatively to the
reference element of this tile using a linear combination of the vectors of the fitting
matrix as follows

∀ i, 0 ≤ i < spattern, ei = refr + F × i mod sarray (2)

where spattern is the shape of the pattern.

3.4 Projection onto an Execution Model

It is a strength of Array-OL that the space-time mapping decision is separated from the
functional specification. This allows to build functional component libraries for reuse
and to carry out some architecture exploration with the least restrictions possible. Map-
ping compounds is not specially difficult. The problem comes when mapping repeti-
tions. This problem is discussed in details in [1] where the authors study the projection
of Array-OL onto Kahn process networks [7]. The key point is that some repetitions
can be transformed to flows. In that case, the execution of the repetitions is sequential-
ized (or pipelined) and the patterns are read and written as a flow of tokens (each token
carrying a pattern).

3.5 Array-OL Transformations

A set of Array-OL code transformations has been designed to allow to adapt the appli-
cation to the execution, allowing to choose the granularity of the flows and a simple ex-
pression of the mapping by tagging each repetition by its execution mode: data-parallel
or sequential. This paper is not meant to give a complete presentation of the Array-OL
transformations; the topic is much too complex. More details can be found in the PhD
thesis of Julien Soula [9] and Philippe Dumont [3].

A major problem for designing an execution model for Array-OL is introduced by the
so called “synchronization barriers” between the components. Such a barrier is created
by the data dependencies. A task cannot begin its execution until all its input arrays
are entirely produced. A sequential execution is, by consequence, not appropriate; the
presence of any intermediary array that contains an infinite dimension would cause
the execution to be stalled in that point. A solution could be a pipelined execution by
refactoring the application using the Array-OL transformations. Using the hierarchy, we
intend to isolate the infinite dimensions at the top hierarchical level of the application
(which will represent the data-flow), while in the lower levels we can choose a pipelined
execution.

All the Array-OLtransformations are based on a mathematical formalism that en-
sures their correctness, but which will not be presented due to limited paper size. Details
can be found in the bibliography.

Fusion This transformation basically takes two components that have at least one com-
mon array (the first component produces an array consumed by the second component)
and these two components are merged into a single compound component containing
the previous two. The result of fusion is the creation of a hierarchy level, with a com-
mon repetition and sub-repetitions on the lower level hierarchy. The components keep
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their functionality after the fusion but the difference is that the arrays that they work on
are different (parts of the original arrays). The question is how the parts of the original
arrays are chosen and why? In our implementation the fusion was designed is such a
way that the created compound component takes the smallest possible patterns from the
input arrays that can produce at least one element of each output arrays.

In Figure 3 we can see the result of the fusion on the downscaler application. We
can see that after the transformation the two initial filters are merged into a single com-
ponent which contains the initial filters that now consume different arrays, the infinite
dimension remaining at the top level.
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After the fusion, a hierarchy level was introduced in the application, the original filters were
merged into a single compound component that passes now just parts of the initial arrays to the
filters.

Fig. 3. Downscaler after fusion transformation

Change paving transformations can be used to change the granularity of the applica-
tions or of parts of the application by redistributing repetitions between hierarchy levels.
As a direct consequence it can be used to reduce the redundant computations (called re-
calculations) generated in some cases by the fusion. This problem can appear after the
fusion, if the first component before the fusion produced overlapping patterns. This will
cause the first sub-component after the fusion to compute multiple times the same ele-
ments of the original arrays. What we can do is reducing the amount of re-calculations
by extending the pattern of the compound component so it will include more. In the
extreme case, if we extend to the maximum the pattern on all the paving vectors which
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cause re-calculations, we may even eliminate the phenomenon. Still, this is not possi-
ble in the case where the re-calculations are present on the infinite dimension without
eliminating a major role of the fusion, that of isolating the infinite dimension on the top
level of the hierarchy.

Change paving by adding dimensions, as its name indicates, extends the pattern by
the use of an extra dimension, having the size of the change paving level. Parts of
the repetition of the top level descend a level of hierarchy as new dimensions of the
repetition spaces of sub-components. Change paving by linear growth transformation
is designed specially to reduce the re-calculations and so it can be applied only on tasks
that contain re-calculations. What this transformation does different than the previous
is to calculate a surrounding pattern and in this way the transformation can be used to
reduce the re-calculations. We extended the use of the transformation to the case where
the patterns are “glued” together, even if there are no re-calculations. It’s advantage is
that it does not introduces extra dimensions to the arrays involved in the transformation.

Tiling transformation was designed in order to allow the introduction of granularity
degree concept in an application. This concept, introduced in the context of control,
allows to delimitate different execution cycles. More details on this topic can be found
in the PhD thesis of Ouassila Labbani [8] (chapter 7.3). A granularity degree basi-
cally defines a subset of the repetition domain that corresponds at the execution to a
controlled Array-OL component. The result of such a transformation is similar to the
loop tiling and is basically the separation in functional blocks that have as an important
characteristic the increased locality.

Collapse The fusion transformation can work only on two tasks at a time. In we want
to fusion three or more tasks we must apply the fusion multiple times and this will lead
to the creation of what we call “abyssal hierarchies”, applications that are spread on
multiple hierarchy layers. The solution is the collapse transformation, represented by a
series of maximum change paving transformations that have the effect of extending the
patterns of the compound component so it contains all the original patterns and in this
way this component can be eliminated by replacing it with its sub-components, which
will “climb” a level in the hierarchy.

By applying a certain number of transformations we can change the structure of an
Array-OL application without modifying it’s functionality. One can use these trans-
formations to refactor the application to respect various constraints (timing, hardware
mapping, memory optimization).

4 Array-OL vs. Loop Transformations

Loop transformations are most efficient on code that contains extremely regular data
treatment (perfectly-nested loops) which is exactly the domain of Array-OL.

We start with some important observations on these transformations. First, Array-OL
transformations have a major advantage over loop transformations that are usually local
optimizations while the Array-OL ones can be applied at any level of the hierarchy
thanks to the pattern based data accesses. The pattern based data accesses make the
Array-OL access structure more visible and much easier to manipulate, differently from
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the complex formulas manipulating the loop indices. There are also disadvantages with
Array-OL; the most important is introduced by the limitations of the language, one of
them being the extreme regularity. This restrains the domain of applications that can be
specified with Array-OL to a limited set.

We will not compare separately each pair of transformations, each Array-OL trans-
formations resembles in functionality with it’s homonym, but rather try to identify the
role of each transformation and its possible usage. When passing to an execution model
in Array-OL there are a set of key concepts that must be carefully analyzed. First, we
must isolate as much as possible the infinite dimension but in the same time respect the
internal constrains introduced by the data dependencies and avoid any blocking points
in the execution. All these are done by the use of the fusion that has three major effects:
it isolates the infinite dimension on the top hierarchy level, it minimizes the intermedi-
ate arrays and guaranties a non-blocking structure. As the loop fusion, they both have
the role of merging two dependent entities (Array-OL components in the first case and
loop-nest in the other) with the purpose of eliminating or at least reducing intermedi-
ate data size. An advantage of Array-OL fusion is that it automatically does the array
resize, while the loop transformation needs other transformations in order to achieve
this, like the scalar replacement or intra-array storage order optimization. The fusion
in Array-OL can be used to reach a multi-level application structure where all the infi-
nite dimensions are left on the top level that will represent the data-flow. The collapse
transformation has an important role in connection with the fusion, for avoiding the
apparition of “abyssal hierarchies” created by chaining fusions.

The change paving, resembles with the loop unrolling. They both act on redistrib-
uting the iterations between levels (hierarchy levels or nest levels). In the context of
Array-OL we can use this type of transformation for example to restructurate the appli-
cation so it respects the environment constrains.

The Array-OL tiling corresponds to the loop tiling or partitioning transformation; the
first introduces a level of hierarchy while the second introduces a nesting level to the
loop-nest. The both have the role of splitting the iteration space into functional blocks
which has a positive influence on the data locality.

We must note that in the context of Array-OL optimizations we don’t need to search
to increase the parallelism of the application, the parallelism is evident, it was one of the
starting point of Array-OL to produce a specification language where the parallelism is
fully expressed in the specifications. What we are most interested in is memory opti-
mizations (static and dynamic), but by respecting the application constrains. None the
less, transformations change the structure of an application and this implies changes to
the parallelism.

Algorithms based on loop transformations that can give the optimum solution for
memory optimizations are not practical, due to complexity issues. Most of the times
heuristics are used. In the context of Array-OL we can also use as a starting point a
heuristic, the one that involved the transformation of an application to the multi-levels
structure, which has proved extremely useful.

As said in the introduction, the Array-OL language presents some advantages. The
application defined in Array-OL is extremely regular and this regularity is contained
directly in the language; also the parallelism is evident so this is another thing that we
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don’t have to worry about. Another advantage is brought by the ODT formalism, which
guaranties the correctness of the transformations as regarding the data dependencies.

5 Conclusions

Array-OL transformations have a determinant role in the context of Array-OL. They
can be used not only for optimization but also as a tool for refactoring the application.
For now it is just an instrument in the hands of the designer but in the future, after
the needed concepts will be introduced to Array-OL, optimization algorithms using the
presented transformations will be designed and implemented. These optimizations also
depend on the execution model chosen for the Array-OL model and they will evolve in
parallel with the evolution of the execution models.
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Abstract. Generation of hardware architectures directly from dataflow
representations is increasingly being considered as research moves toward
system level design methodologies. Creation of networks of IP cores to
implement actor functionality is a common approach to the problem, but
often the memory sub-systems produced using these techniques are inef-
ficiently utilised. This paper explores some of the issues in terms of mem-
ory organisation and accesses when developing systems from these high
level representations. Using a template matching design study, challenges
such as modelling memory reuse and minimising buffer requirements are
examined, yielding results with significantly less memory requirements
and costly off-chip memory accesses.

Keywords: dataflow, template matching, hardware synthesis.

1 Introduction

With system complexity and integration levels continuing to rise, there is a grow-
ing need for a high level comprehensive design flow. Modern signal processing
applications are increasingly being implemented on heterogeneous multiproces-
sor platforms, particularly those including Field Programmable Gate Arrays
(FPGAs), but the process of targeting these platforms is only now beginning to
move from disparate techniques toward system level design. These tools are still
in their infancy, and as each target domain has different requirements, many
methods have arisen to assuage designer demands. In signal processing, because
of the data dominated nature of the applications and parallel operation of many
of the algorithms, dataflow based models of computation (MoC) are often em-
ployed, allowing concurrency to be visualised and exploited [1].

The point-to-point nature of these dataflow models has led to many of these
system level design tools adopting a core network generation approach to im-
plementing the hardware partition in these heterogeneous platforms [2][3][4].
They often employ simplistic memory interfaces that closely match the first-in
first-out (FIFO) buffers seen in the dataflow models. The memory sub-system,
however, can have a significant influence on the overall performance and energy
consumption of an implementation [5], particularly when processing large tokens,
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for instance in image processing applications. The larger memory requirements
often necessitate off-chip memory accesses, which will have longer access times
and higher energy usage than on-chip, resulting in lower performance and higher
overall power consumption [6]. One solution is the introduction of a layered mem-
ory architecture, using increasingly smaller buffers to store frequently accessed
values. As the memory architecture can have a significant impact on the quality
of the implementation, the ability to optimise and derive an efficient memory
configuration from the system level becomes essential.

This paper will use the design study of a template matching algorithm to
highlight various issues with implementing signal processing systems directly
from high level representations, particularly in reference to memory organisation
and utilisation. It proposes certain methods for refinement of these systems and
addresses inefficiencies that arise when targeting these systems onto hardware
partitions in FPGA-based heterogeneous platforms. Section 2 introduces some
challenges in implementing the memory sub-system directly from the high level
models currently in use. Section 3 describes the template matching study: firstly
examining the algorithm, then modelling it, and lastly performing refinement.

2 Challenges Mapping from System-Level DFG to HW

Various DFG representations of the same algorithm can lead to significantly
different resulting hardware systems. This means that refining the graph permits
high-level modifications to be performed and allows system-level optimisations
of the implementation. These can involve simply changing the graph parameters,
modifying the graph to increase parallelism, or even changing the MoC.

Since the first iteration of a graph is often focused on ensuring the algorithm
performs correctly, inefficiencies in a hardware design can be introduced by the
system level model. Refining this algorithm to a more implementation specific
version is a vital tool to create an efficient final implementation. Which refine-
ments to perform will depend heavily on the application domain being targeted.
For memory generation, [7] has demonstrated how manipulating the token sizes
can have a significant impact on memory usage. Also [8] introduced exploiting
data reuse using dataflow-based hardware design flows by changing the MoC.
The next section examines refinement of a template matching application.

3 Template Matching

3.1 Template Matching Algorithm

Locating where (or if) a target object is in a given image is a computationally
complex problem which can be performed by correlating the incoming images
with a template representing the target object. To successfully perform this
calculation, the target must be the same size and orientation in the image and
the template, so in practical applications multiple kernels, representing various
sizes and rotations are used. Here 32 kernel values are used and compared to
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Fig. 1. Template matching block diagram

the incoming images. For large frames, converting the images and kernels into
the frequency domain and multiplying them is more efficient, as a convolution
in the spatial domain is equivalent to a multiplication in the frequency domain
[9]. To compute the algorithm, the image is acquired from an external source
and processed as shown in Fig. 1. To reduce the complexity, the 512x512 pixel
images are divided into four 256x256 blocks and processed separately. The image
is filtered using a 2-D convolution with a 3x3 pixel kernel and edge detection is
performed as this yields a better result (another 2-D convolution).

Once pre-processed, the image is converted into the frequency domain in the
feature extraction block using an FFT. This result is multipled by the 32 fre-
quency kernels using an element-wise multiplication and all 32 images are con-
verted back into the spatial domain using an IFFT. These results are examined
in the classification block; if the pattern existed in the image, some of the results
should contain a correlation peak at the location of the target object.

The 2-D convolution and FFT algorithms are both separable (given a separa-
ble kernel for the convolution), meaning that instead of performing a 2-D opera-
tion, two 1-D operations can instead be executed. This can be shown graphically
in Fig. 2. Here the 3x3 kernel for the 2-D convolution is separated into two 3 pixel
kernels, a row vector and a column vector. These can then be applied separately
to the image. In this case, the row kernel is applied first, yielding the image i.
The column kernel is then applied to i to give the 2-D convolved image. Since a
1-D convolution scans over an image, subsequent blocks will share pixels; Fig. 2
shows that the block for h(k+1) will share two pixels with h(k).

a(m,n)

h(
j)

i(m,n)

h(k+1)
h(k)

h(
j+

1)

Fig. 2. Separable 2-D convolution algorithm

3.2 Template Matching Modelling

The block diagram representation can be converted into a dataflow graph for
rapid implementation. The two convolution operations are modelled using
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Fig. 3. Template matching dataflow graph

multi-dimensional dataflow (Fig. 3), where the dimensions of each token are
represented in parenthesis, the first dimension representing the vertical direc-
tion and the second the horizontal. The number of tokens each actor consumes
or produces in one firing (the threshold) is given by the value in square brack-
ets (this value is omitted when equal to one to simplify the graph). Due to the
32 IFFTs that need to be performed for one image, using a single IFFT core
cannot meet the real-time processing requirement (outside of the scope of this
paper are the high level performance estimations which can be performed). To
address this, an array of cores are used; multiple cores are used for the mult and
ifft actors which can be modelled using multidimensional arrayed dataflow [11]
as shown in Fig. 3. The filled actors or ports indicate an array with the size
given in triangular braces (y) and the double lines show an array of arcs.

Since the 2-D convolutions are separable, they are replaced by two 1-D convo-
lution actors. In the same way, the FFT/IFFT operations are converted into two
256-point FFT/IFFT actors. The filter values are produced by the Const rP /cP

and Const rS/cS actors and the 32 kernel values are generated by Const k. Since
the same FFT value is used for 32 kernel values, the input to the mult actor is
cyclo-static, with a new data sample (i.e. a new FFT result) being consumed
every 32/y firings. This is modelled using cyclo-static dataflow (CSDF), where
the tokens thresholds are no longer static, but vary in a cyclic manner [10]. This
is represented by a value in curly braces, in this case the mult actor consumes
one token on Ar and Ai the first firing and then none for the next (32/y)-1 as
indicated by the value of m. The multiplied images are then converted back into
the spatial domain using the IFFT. In this case, two mult and ifft actors are
sufficient for real-time processing (y=2).

Implementing this system directly from the model in Fig. 3 would require
a 256x256 byte buffer between each actor (e.g. r convP produces a row, but
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c convP requires a column, so all 256 row will need to be stored before c convP

can fire). Refining the graph from the algorithmic level will allow optimisations of
the resulting memory subsystem to be performed. The template matching model
will be further investigated, beginning with the 2-D convolution operation and
then followed by the feature extraction block to examine these refinements.

3.3 2-D Convolution Model Refinement

Since the 1-D convolution cores do not consume an entire row or column at a
time, the model will be altered to process one filter kernel at a time (one 3 pixel
vector) and produce one pixel per firing. Two pixels between subsequent blocks
are the same (as shown in Fig. 2), so an actor is inserted to store an entire
frame, and produce the required 3 pixel values as shown in Fig. 4(a). Here the
input image is consumed on the first firing of A and then stored using the self
loop to produce all of the necessary row vectors for the image. Each of these
are convolved with the kernel value and the output stored in an intermediate
memory. In the same way, this data is kept over several firings of B, each time
producing a new column vector. This is used with the column kernel to produce
the final output value. A valid schedule for the DFG can be constructed by firing
the Src actor, followed by A, Const r, and r conv 67080 times (which complete
one iteration of the cyclo-static schedule given for A, which uses the entire token
produced by Src. This is followed by 66564 executions of B, Const c, and c conv,
which will produce the 66564 token needed for Snk to fire once. This schedule
can be written as: {Src, 67080{A,Const r, r conv}, 66564{B, Const c, c conv},
Snk}, where the number outside of a bracket indicate the number of times the
actors within fire. Using this schedule, the memory sizes and bandwidths required
can be calculated. The necessary size of each buffer can be calculated by tracing
the size of each memory during one execution of the schedule and taking the
maximum value. The bandwidth is calculated using Eqn.(1), where β is the
bandwidth, f is the number of firings of an actor, ρc is the number of bytes
produces in one execution of a cyclo-static cycle (for static graphs, this is the
bytes in one firing), L is the period of the that cycle (1 for static graphs), and
fr is the frame rate.

β = f ∗ ρC

L
∗ fr . (1)

Using the size and bandwidth calculations, the memory organisation graph in
Fig. 4(b) can be determined. The minimum bandwidth between the image and
r conv should be 8.11 MB/s; this is calculated by taking the image size (260x260
pixels) and multiplying by the frame rate (4 images per frame at 30 fps). As the
bandwidth required is 24.15MB/s, data is being read multiple times and it may
be more efficient to implement the graph taking data reuse into account.

To model this reuse, an extension to CSDF to allow special channels is em-
ployed [12]. For a 1-D convolution, storing the two pixels reused between blocks
reduces the necessary bandwidth to the larger frame memories by introducing
closer, smaller memories to the hierarchy. This is accomplished by inserting spe-
cial actors C and D into the graph as shown in Fig. 4(c) which break the link to
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the large memories and use the special channels nomenclature to reuse tokens
between firings. This behaviour is characterised by three values on the actor
ports. The r value defines the number of tokens an actor consumes on each fir-
ing, p indicates the number of tokens released, and the token dimensions are
given in parenthesis.
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Fig. 4. 2-D convolution memory organisation

Here r conv processes data in the horizontal direction; only one new pixel is
required between firings as the other two are reused (up to an edge where three
tokens are released). This pattern is given in Fig. 4(c) by the values of r and p.



Memory-Centric Hardware Synthesis from Dataflow Models 203

Since rc=3, r conv will consume three tokens each time it fires, but pc shows
that for the first 257 times it will release one pixel, followed by 3 (when it reaches
an image edge). To cover all of the rows, this is repeated 260. The convolution in
the vertical direction, c conv, proceeds after the row convolution. This time the
data is scanned along the vertical axis, so that once again two pixel values can be
reused between invocations, and the data is then output along the vertical direc-
tion. Scheduling this graph yields: {Src, 260{2{A}, 258{A,C,Const r,r conv}},
258{2{B},258{B,D,Const c,c conv}}, Snk}. This can be used to determine the
buffer requirements between actors along with the necessary bandwidths using
Eqn.(1). As shown in Fig. 4(d) the bandwidth to the large memories is reduced
to the minimum value previously calculated (8.11 MB/s). This is at the expense
of a 3B local buffer to store the data for reuse between convolution calculations.

It can be noted that exploiting all possible reuse in an algorithm can actually
hinder the memory efficiency of implementations. In the previous graph B re-
quired an entire frame before it could fire. This is a result of moving vertically
down the intermediate image so that only a single pixel is required for each new
block. Since the r conv actor fills the intermediate image in the horizontal direc-
tion, the last row will be needed before B can process the first column. If this
level of data reuse is not exploited and B proceeds in the horizontal direction, it
could simply consume a (3,1) token as soon as one is available (this occurs after
two rows and one pixel have been produced by r conv). On each subsequent
firing of r conv a single pixel will be produced and since B has stored the two
previous rows, it can fire again, consuming a single pixel and producing a (3,1)
token. This means only 517 pixels (two 258 pixel rows and one pixel) need to be
stored between the 1-D convolutions. The maximum amount of memory reuse is
not exploited in this case, but since the memory requirements have been reduced
such that the intermediate memory easily fits on chip, the number of memory
accesses has a lesser effect on power or performance than if it was located off-
chip. This is shown in Fig. 5(a), where the first convolution takes the image
and stores it with Ap producing a token each time it fires. The r convp actor
consumes three of these tokens, but reuses two each time (up to the edge). It
produces one token (moving across the horizontal) with the Bp actor consuming
517 of these on the first firing and one additional token on each subsequent firing
in the schedule. Actor c convp consumes a single (3,1) token each firing, allowing
a new value to be written into the memory, so the intermediate buffer only needs
to be 517 B. This means that the c convp actor will not take advantage of the
data reuse; as a result, the number of memory accesses will not be reduced, but
it easily fits on-chip into a fast memory as shown in Fig. 5(b).

The output of the first convolution is a single token, moving across in the
horizontal direction, which was the same as the output of the Ap actor. This
implies that the segmentation block can use this data directly, removing the
need for an entire image to be stored between them (hence no As actor exists).
The r convs actor can use this token directly, combining three of them into a
(3,1) token and consuming it, reusing two tokens each time up to the edge. The
Bs actor also needs two rows plus a single pixel, so 513 tokens need to be stored
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(the rows are 256 pixels at this point). This produces a (3,1) token which is
finally convolved in the c convs actor with the output of a single token moving
across the graph in the horizontal direction being passed to the fft1 actor.

r_convP

a
o

b

Const_rf o
[1](1,3)

[1] (0,1)

c_convP

a
o

b

[1](3,1)

Const_cf o[1](1,3)
[1](3,1)

[1](3,1)

[1] 
(0,1)

APi o

(260,260)

[1] (3,1)

Bpi
(0,1)

BPi o

[517](0,1)

prP (1)

prP = {260{257 1, 3}}

rrP = 3

r_convS

a
o

b

Const_re o

[1](1,3)

[1] (0,1)

[1](3,1)

Const_ce o[1](1,3)
[1](3,1)

[1](3,1)

[1] (3,1)

{513, 65535 1} 
(0,1)

BSi o

[513](0,1)

prS (1)

prS = {258{255 1, 3}}

rrS = 3

Preprocessing

Segmentation

c_convS

a
o

b

[1] (0,1)

{1, 67599 0} 
(260,260)

[1] 
(260, 260)

Src o [1] (0,1)

Bpi = {517, 66563 1}

(a) Preprocessing and Segmentation CSDF Graph

Off-chip On-chip

8.11 
MB/sImage

67.6KB

24.15 
MB/s r_convP

23.77 
MB/s

2D Conv 
Out

3B

7.99 
MB/s

3B

260
8.05 
MB/s 517 B

258 23.96 
MB/s

c_convP

r_convS

7.93 
MB/s 513 B

256

c_convS

23.59 
MB/s

260

(b) Memory Organisation

Fig. 5. Preprocessing and Segmentation Refined Model with Data Reuse

3.4 Feature Extraction Model Refinement

The FFT/IFFT cores operate on a single pixel at a time; they read in 256 pix-
els (over 256 cycles), process them for the next 256 cycles, and then write the
results out for 256 cycles. The cores allow data to be written in while the core
is processing and outputting data, so this is modelled using CSDF as shown in
Fig.6(a). The memory sub-system for the feature extraction block can be exam-
ined, checking for any optimisations that could improve the memory utilisation.
The memory architecture is outlined in Fig. 6(b). As the fft2 actor requires an
entire column of data, it has to wait until fft1 has finished processing an image
before beginning (after 66048 firings). This means that two entire 256x256 im-
ages (one real and one imaginary) will need to be stored between the fft1 and fft2
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Fig. 6. Feature extraction CSDF graph

actors (with the same for the IFFT). This will require a large, most likely off-chip
memory, but as each pixel value will only need to be read once, there is little
reason to try to introduce memory levels in this case. Calculating the memory
bandwidth shows it is already at its minimum value as shown in Fig. 6(b).

Since the values from the FFT need to be multiplied by all 32 kernels, the A
actor is used to store the data; it takes a complete image on the first execution,
and then outputs the same image for the next (32/y)-1 firings (so for y=2 it
reads in a new token every 16th firing). Looking at the memory organisation in
Fig. 6(b), A translates into a memory to store the real and imaginary images;
since this data is reused frequently, it is implemented in on-chip memory. The
kernel values are stored off-chip and require 252MB/s on both the real and
imaginary interfaces to process data in real-time with the bandwidth to each
multiplier being 126 MB/s. The two IFFTs will also need an off-chip memory,
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so the total off-chip bandwidth can be calculated by summing the individual
bandwidths, giving 1024 MB/s, which is possible with modern FPGAs.

4 Conclusion

Combining the above DFGs, gives a high-level description of the core function-
ality of the template matching algorithm and refining the graph from a purely
algorithmic description into a implementation specific form has allowed the mem-
ory reuse inherent in the algorithm to be exploited, memory hierarchies to be
introduced, and the size of the memory buffers required to be reduced. By mod-
ifying the graph to incorporate implementation specific characteristics, such as
the platform being targeted and the cores being used, more optimal memory sub-
systems can be derived, and exploration of these systems allows the best memory
architecture to be determined earlier in the design cycle, easing modification.
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Already our technology is able to accommodate hundreds of cores on a single chip.
The embedded market is already embracing this but the wider market is back-peddling.
There is no doubt however that these markets will converge and that the processor will
become the new building block of our chips and systems. The big problem problem
however, will be in turning this technology into large complex systems. There are no
lack of contenders for concurrent programming languages but the problem with most
paradigms is that they mix algorithmic and concurrency engineering and do little to
promote safe and composable parallel programs. The question that must be asked is
whether there are programming models or combinations of models that are ubiquitous
enough to form the basis for a co-ordinated solution to the problems of programming
MPSOC. This special session has succeeded in bringing bringing together a number of
key researchers working in the area of programming models for the next generation of
complex systems based on multi- and many-core chips. Collectively they are develop-
ing models, languages and compilers to enable a paradigm shift in this important area.
The scope of the contributions will cover deterministic approaches, such as functional
languages and data-parallel languages as well as extracting concurrency from sequen-
tial code. In addition, a number of new co-ordination languages will be presented that
range from static to dynamic mapping of components to resources. These are challeng-
ing problems but we are pleased to present some significant progress from invited and
contributed papers in this session.

� Special Session Chair.

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, p. 207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Design Issues in Parallel Array Languages for

Shared Memory�

James Brodman1, Basilio B. Fraguela2, Maŕıa J. Garzarán1, and David Padua1
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Abstract. The Hierarchically Tiled Array (HTA) is a data type that fa-
cilitates the definition and manipulation of arrays partitioned into tiles.
The data type allows to exploit those tiles to attain both locality and
parallelism. Parallel programs written with HTAs are based in data par-
allelism, and provide the programmer with a single-threaded view of the
execution. In our experience, HTAs help to develop parallel codes in a
much more productive way than other parallel programming approaches.
While we have worked extensively with HTAs in distributed memory en-
vironments, only recently have we began to consider their adaption to
shared memory environments such as those found in multicore systems.
In this paper we review the design issues, opportunities and challenges
that this migration raises.

Keywords: parallel programming, data parallelism, tiling, shared
memory.

1 Introduction

Arrays are one of the most basic and useful data structures. The parallelism
in the operations on their components, expressed as array operations and func-
tions, has been exploited successfully since the days of the early array and vector
processors [1]. The efforts to express the data parallelism in array operations have
been often implemented as new languages or language extensions. The historical
experience in the attempts to implant new languages with a focus on parallelism,
coupled with the large base of existing legacy codes, makes us think that macros,
and more in general, libraries, are a better vehicle to bring parallelism to main-
stream computing. The advent of object oriented (OO) programming further
supports our observation, as it enables to associate methods or tasks with sets
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of data. In OO languages arrays can contain objects of any kind, and the opera-
tions on them need not be restricted to be the traditional simple mathematical
operations as was the case for SIMD implementations. Rather, arbitrary tasks
encapsulated as methods can be performed in parallel on the elements of the ar-
ray. Integration of libraries and classes that express parallelism in OO languages
is further facilitated by their polymorphic features and operator overloading,
when available.

Tiling [2] is closely related to array processing. Tiles are used both to increase
the locality of the accesses in sequential programs [3] and to describe data paral-
lelism [4,5,6,7]. This led us to the development of the Hierarchically Tiled Array
(HTA) data type [8]. HTAs represent arrays partitioned into tiles which can
be further partitioned recursively. When parallelism is expressed using HTAs,
programs have a single logical thread of execution. They express parallelism as
array operations on HTAs, with the operations on the different tiles of an HTA
taking place in parallel. This gives structure to parallel operations, which im-
proves readability and maintainability over the SPMD (Single Program Multiple
Data) approaches. The tiling allows to choose the granularity of the tasks with
different purposes. For example, the number of tasks can be chosen so that the
local working set fits in the memory of a node in a distributed memory environ-
ment. The tiles in an HTA can be recursively subtiled in order to subdivide the
work to perform so that the data to process at each time fits in a given level of
the memory hierarchy of the machine.

We have experimented with this data type for a number of years now [8,9]
using both typical parallel benchmarks such as NAS [10] and serial codes that
benefit from tiling. Our experience is that HTAs allow to write these codes in
a much more productive way than traditional approaches while achieving good
performance. Still, we have always worked on distributed memory environments,
and it is for them that we have defined the semantics of our data type. Given
the growing importance of multicore systems, and the conviction that most HPC
systems in the future will have a hybrid memory model, the moment to define the
HTA implementation options and semantics for these environments and build
an HTA library for hybrid memory models has arrived.

The rest of this paper is organized as follows. Section 2 is a brief introduction
to the HTA data type. Section 3 reviews the design issues that an HTA imple-
mentation for shared memory systems poses. Finally, we present our conclusions
in Section 4.

2 The Hierarchical Tiled Array

The Hierarchically Tiled Array (HTA) [8] is an array data type which can be
partitioned into tiles. Each tile can be either a conventional array or a lower
level HTA. Tiles in an HTA can conceptually be mapped on to different levels
of the memory hierarchy. At the top-most level, tiles can represent portions of
the array that map to different nodes in a cluster. Each of those tiles could
then carry additional levels of tiling that then map to the various levels of cache
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-

Fig. 1. HTA Indexing, () are used to index tiles, [] to index scalars

in a machine. One could then further partition the tiles to map the individual
scalars to registers. Programmers see a single-threaded view of execution in HTA
programs. Parallelism takes the form of concurrent operations across tiles. The
tile size thus provides the granularity of parallel execution.

Figure 1 illustrates the three ways in which HTAs may be indexed. One can
index HTAs at both the tile and scalar level and combine both indexing schemes.
One can flatten the tiling structure to directly access the scalar elements of HTAs.
A hybrid approach can also be used when the programmer wants to access one
or more scalars found in one or more tiles. In the example, A(0,0) indexes the
first tile in the first row. Likewise, A(1,0:1) indexes the entire second row of
tiles. A[0,3] indexes the last scalar on the first row using the flattened notation.
The same scalar can be indexed as A(0,1)[0,1] using the hybrid scheme.

HTAs support the three main constructs found in data-parallel computations:

– Element-by-element operation: A function is applied to each element of an
array or corresponding elements of two or more conformable arrays.

– Reductions: These apply operations on an array to produce an array of lesser
rank. For example, computing the sum of the elements of a one-dimensional
array produces a scalar.

– Scan: A function computes a prefix operation across all the elements of an
array.

These operations take the form of three methods in the HTA library: hmap (which
implements element-by-element operations), reduce, and scan. The three con-
structs receive at least one argument, a function object that encapsulates the
operation to be performed. In the case of hmap, the function may accept addi-
tional HTAs as parameters that must have the same tiling structure as the HTA
instance on which the hmap is invoked. This effectively allows programmers to
extend the library with new user-defined operations. A simple example of hmap
can be seen in Figure 2. Here, two HTAs, X and Y, with ten tiles of ten elements
are created. Function F is applied on them by hmap. In it, each tile in X assigns
its elements the sum of their current values plus the values in the corresponding
tiles of Y plus one, in parallel. HTAs overload the arithmetic operators (+,*,...)
and also assignment so that these typical element-by-element operations can be
expressed in a traditional array syntax instead of requiring the usage of hmap.
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1 HTA X([10], [10])
2 HTA Y([10], [10])
3
4 ...
5
6 hmap(F(), X, Y)
7
8 F(HTA X, HTA Y) {
9 do i=1,10

10 X[i] = X[i] + Y[i] + 1
11 }

Fig. 2. hmap Example

Operations typical of array languages such as matrix multiplication, transpo-
sition, or stencil computations are also found in the library. All parallelism is
explicit and takes the form of independent operations performed on tiles. Syn-
chronization required by operations such as reductions is implicit and handled
by the library.

The tiling structure of an HTA is normally specified at creation time. However,
some problems are more naturally expressed in a dynamic or input-dependent
fashion. The dynamic partitioning [9] feature enables the modification of the
structure of an HTA after its creation by adding or removing partition lines, the
abstract lines that separate the tiles in an HTA.

3 Design Issues for Multicore and Shared Memory
Systems

As mentioned before, we have an implementation supporting HTAs that runs on
distributed memory systems. An HTA program appears to the programmer as
having a single thread of execution. Arrays are partitioned and distributed across a
set of nodes and non-HTA data such as scalars and non-HTA arrays are replicated
on all the nodes. When operating on an HTA each node works on its portion of
the HTA. However, when operating on non-HTA data, our implementation uses
the SPMD mode, and all the nodes execute the same code on its local copy of the
non-HTA data. Synchronization is achieved implicitly, by the underlying send and
receive messages used to communicate between the nodes.

When running an HTA program in a shared memory environment the situation
changes quite a bit, and a wide space of design options can be explored, each of
them resulting on different performance/productivity trade-offs. In this Section
we discuss some of the issues that appear in this shared memory environment.

3.1 Dynamic Task Creation

In many parallel programs tasks can be identified before execution begins. In
terms of HTAs, this means that HTAs can be created with a given partitioning
suitable for the algorithm that is being parallelized and that this partitioning
does not need to be modified later. In the HTA library, the parallel tasks are
determined by the tiles. In distributed memory systems, the parallelism is also
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determined by the distribution of tiles to processors. In these systems, dynamic
task creation or, in other words, repartitioning of an HTA, involves an expen-
sive redistribution of the data. For this reason, we did not implement dynamic
partitioning in our distributed memory implementation. Instead, we leave pro-
grammers to solve the problem.

In shared memory systems, however, the ability to create tasks dynamically,
that is, to define and spawn parallel subtasks from a parallel task, can be useful
and even necessary to obtain good performance. Dynamic task creation is good
for two reasons: it allows programmers to more elegantly write their algorithms
and can be used to improve load balance.

In HTA programs, tasks are created by hmap. hmap can be implemented by
a parallel loop where each iteration corresponds to a tile. If the parallel loops
are implemented using Intel’s Threading Building Blocks [11], each processor is
assigned a range of iterations and idle processors can steal part of the range
of another processor, splitting one task into two. Dynamic task creation by the
library, rather than by the program, could help improve load balance. These
issues will be further discussed in Section 3.2.

Task creation can also be hierarchical as illustrated by the example in
Figure 3, parallel merging of two sorted sequences (input1 and input2), where
the partitioning is dependent on the input to be merged. A rough sketch of the
algorithm states that one first splits the first input HTA in half. Next, the lo-
cation of the first element greater than the midpoint element of the first input
HTA is found in the second HTA and used to partition it. The output is par-
titioned such that its new tiles can fit the merged elements from the respective
tiles of the input arrays. Finally, hmap recursively calls the Merge operation on
the newly created left tiles of the two input arrays as well as the right tiles. Here,
the Merge operation creates a tree of tasks during the course of its recursion.

Note that in this example, dynamic partitioning enables the implementation
of merge in this elegant manner. In this case, dynamic task creation for both al-
gorithmic elegance and load balancing can be combined. The programmer could
change the number of partitions created in each invocation of Merge to improve
load balance.

1 Merge(HTA output, HTA input1, HTA input2) {
2 ...
3 if (output.size() < THRESHOLD) {
4 SerialMerge(output, input1, input2)
5 }
6 else {
7 i = input1.size() / 2
8 input1.addPartition(i)
9

10 j = h2. location first gt (input1[i ])
11 input2.addPartition(j)
12
13 k = i + j
14 output.addPartition(k)
15
16 output.hmap(Merge(), input1, input2)
17 }
18 ...
19 }

Fig. 3. Parallel Merge
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3.2 Locality vs. Load Balancing

Conventional notation for task parallelism does not provide a convenient mech-
anism to express locality [12,13]. However, locality is very important to achieve
good performance in multicore systems due to the existence of a hierarchy of
private and shared caches, coupled with shared buses to memory systems which
are much slower than the processors they feed. With HTAs we solved this prob-
lem in a very natural way for distributed systems. However, in shared memory,
extensions are needed to achieve locality.

In shared memory we could promote locality by assigning tiles to processors
when HTAs are created and maintaining this assignment throughout the pro-
gram. This is similar to the way HTAs operate in distributed memory systems.
However, the affinity between processors and tiles provided by this assignment
would hinder load balancing.

To solve the problem of load imbalance a more dynamic strategy is neces-
sary, and that could be to use task stealing. Task stealing provides a mechanism
for dynamic task scheduling. With task stealing a processor places tasks into
its own queue upon creation. Task queues could be implemented using parallel
programming libraries like Intel’s Threading Building Blocks [11] or written in-
dependently. Idle processors can then steal tasks and their associated tiles from
the queue for execution. Task stealing has different implications for affinity de-
pending on whether the parallelism resembles loops or whether it is hierarchical.
The former case refers to common mathematical operations and hmaps. Here, in
order to achieve locality, parallel operations performed on the same HTA should
respect any prior affinity between processors and tiles, that is, execute opera-
tions on a given tile on the same processor that used it before. Task stealing
should follow this approach when possible. However, task stealing can choose to
change the affinity between tiles and processors when a load imbalance exists,
trading better utilization for negative effects on locality.

The case of hierarchical task parallelism is shown in the Parallel Merge ex-
ample in Figure 3. Here, the Merge function performs an operation on the input
before partitioning. The new subtasks created by the subsequent invocation to
hmap would ideally be placed in the queue of the processor that created the tasks
because the data are in its cache. However, task stealing any of these dynami-
cally created tasks can be necessary to balance the load, what would change the
affinity of the tiles to processors. Care must be taken to properly address the
consequences of affinity in our design.

In addition to the concerns about locality, load balancing could also have
consequences on the correctness of HTA programs. Dynamic partitioning, as
mentioned in the previous section, provides another alternative to load balanc-
ing in HTAs. When load imbalance is detected, a run-time element of the library
could decide to dynamically split the tiles in an operation, creating additional
tasks with smaller granularity. For that, the library would have to provide a new
hmap or the programmer would have to annotate the operation passed to hmap to
inform the library that such splitting is legal, that is, that the parallel operation
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defined would be legal if the size or shape of the tiles changed. The library could
choose from several partitioning strategies such as split on the largest dimension,
split on the smallest dimension, quarter, etc. The library would also need to know
if it is safe to permanently alter the tiling structure of an HTA or if the original
tiling structure must be restored at the end of the parallel operation.

Dynamic scheduling of tasks in the distributed memory implementation of
HTA was not feasible. Consequently, it was up to the programmer to distribute
tasks to processors in such a way as to distribute the load as evenly as possible.
However, the lack of communication involved in dynamically moving tasks in
order to improve load balance in shared memory has led us to explore this option
for our implementation on these systems. We must handle affinity in a proper
fashion whether our parallelism comes from hmap or from hierarchical dynamic
task creation. We must also ensure that if the library is allowed to dynamically
create tasks to improve that load balance that it does so in a correct manner.

3.3 Execution Models

In choosing the execution model for our shared memory implementation, we
have two choices:

– Master Thread: A single master thread executes all serial portions of the
program, and creates tasks for worker threads to run in the parallel portions.
There is a single copy of shared non-HTA data.

– Thread Private (SPMD): Every processor executes the whole program. How-
ever, each processor only executes operations on its own data during parallel
operations. Shared data is replicated across all processors.

Different programming environments have chosen different answers to this
problem, e.g., UPC [6] follows the SPMD model and OpenMP [13] follows the
master thread model.

The master thread approach is conceptually the simpler of the two. One
processor executes the sequential portions of the code and only one copy of
shared data exists. When a parallel operation occurs, the master thread spawns
tasks that the other processors execute. This approach requires synchronization
at the beginning and the end of the parallel operations. One can imagine a par-
allel operation in this model as a parallel loop that iterates over all the tiles
in an HTA, applying the operation to each tile. The loop itself would be exe-
cuted only by the master thread, with the execution of the parallel body being
assigned to different threads for different iterations. In the SPMD model each
processor would execute all iterations of the loop, but the operations on each
tile would be executed by only one processor. Another difference between the
SMPD and the master thread approaches is that SPMD has a larger footprint
due to the replication of the non HTA data. In either approach, threads do not
explicitly communicate. Threads correspond to independent operations on tiles
and no synchronization by the programmer is needed.

Figure 4 helps illustrate the differences between both models. In function
B, we assign each tile the values of the previous tile. Using the master thread
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1 int A[10]
2
3 B() {
4 do i = 1,10
5 H(i) = H(i−1)
6 }

7 C() {
8 do i = 1,10
9 A[i] = i;

10 hmap(F, H, A)
11 }
12
13 F(HTA H, int[] A) {
14 do i=1,10
15 H[i] = H[i] + A[i]
16 }

Fig. 4. Examples

approach, this occurs serially on only one processor. However, using SMPD, this
loop will run in parallel, although the dependences will result in a serialization
of the code. The reason is that processor that owns tile i has to wait for a signal
from the processor that owns tile i-1 in order to perform its assignment. In
shared memory, rather than using the owner-computes rule, SPMD can follow
the more relaxed Single Computation rule. When an access to a tile of an HTA
occurs, it is only performed once. Such an access could be handled by a single
processor or even by multiple processors working on different sections if the tile
is dynamically partitioned.

The handling of the shared data on these two execution models has implica-
tions on data locality. Remember that non-HTA data is shared in the master
thread approach and replicated (and as result thread-private) in the SPMD
model. For example, Function C in Figure 4 illustrates a shortcoming of the
master thread approach. The master thread computes the values in array A, so
when the processors perform function F on each tile of H, the non-HTA data, ar-
ray A, is only in the cache of the processor that executed the serial portion of the
code. However, in the SPMD model, array A is replicated across all processors.
Thus, each processor assigns its own copy of the array A. This ensures non-HTA
data will be in every processor’s cache when hmap performs the parallel opera-
tion. Ultimately, performance should dictate which model we choose. We have
not yet performed experiments to determine which model will provide better
performance.

Finally, notice that under both execution models modifications of non-HTA
data within hmap functions should not be allowed. The reason is that hmap is fully
parallel. Thus, under the master thread model, synchronization would be neces-
sary for correctness and this will result in hmap not being fully parallel. Under
the SPMD model, such accesses will be a programming error, as different results
could be obtained in different processors. Ideally, the library should disallow such
accesses, but the languages in which the HTA library can be implemented do
not provide the necessary mechanisms.

3.4 Reference/Value Semantics

In our distributed memory implementation, assigning an HTA to another that
is distributed in a different way implicated data copying. The copy could be
immediate or delayed using a lazy implementation, but the semantics was al-
ways that of a copy by value. In shared memory we can choose between copies
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1 X = ...
2 hmap(... , X)
3 Z = X
4 X = ...
5 hmap(... , X)

Fig. 5. Copy Example

by value or by reference, also called deep and shallow copies, respectively. For
example, a shared memory implementation could use a copy by reference model
implemented through a copy-on-write strategy where a shallow copy that only
copies the pointers is used until a write occurs, at which point a deep copy of all
the data must occur. However, copy by reference introduces additional overhead
into the library as proper reference counts must be kept to ensure that memory
is de-allocated at the appropriate time. In addition, this scheme can potentially
affect the affinity between tiles and processors as is illustrated by Figure 5. In
this example, HTA X is initially assigned some values and then an operation is
performed on it using hmap. Next, another HTA, Z, copies X. X is then changed
again and another parallel operation occurs. Under the copy by value scheme, Z
would be a new copy of X. When X is changed and then used by a computation,
the tiles of X could still be in the caches of the processors that operated on them
in the first hmap. However, under copy by reference, the second write to X would
cause X to be the new copy, with Z continuing to point to the original data. The
second hmap could then find that the tiles of X have changed affinity if the copy
is not careful to preserve it. Intuitively, the easier implementation and lesser
bookkeeping of copy by value leads us to believe that this is, on average, the
faster strategy since one does not usually copy HTAs without modifying them
afterwards. However, this conjecture would need to be experimentally validated.

3.5 New HTA Notations/Constructs

The greater flexibility of access to data by different threads in shared memory en-
vironments probably leads to programs with more complex patterns than those
we have seen in distributed memory environments. As a result, it could be con-
venient to extend HTAs with notations to express these structures. For example,
new ways to express task dependences, new operators (possibly domain-specific),
etc. A very important question is whether these extensions would fit naturally
in the clean semantics and array notation that characterize HTAs.

4 Conclusions

In this paper we have reviewed the different design issues that appear when
considering a shared memory implementation for the HTA, a data type that
allows to express data parallelism as well as locality. These issues can influence
the performance and programming flexibility attained with the HTA. We are
currently examining the trade-offs of the different options, considering several
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potential implementations. Our priorities are, in this order, to provide clear se-
mantics to the programmer, to provide a notation as systematic as possible that
enables most if not all HTA programs to run correctly in every kind of system,
and finally to facilitate the effective parallelization of as many programs as pos-
sible using our class. In this process we should also consider their implications
in hybrid memory systems.
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Abstract. This paper proposes a novel hierarchical architecture and
resource-management protocol for the delegation of work within a ubiq-
uitous and heterogeneous environment. The protocol is based on serving
an SVP place, where a component of work is delegated together with
the responsibility for meeting any non-functional computational require-
ments such as deadline or throughput constraints. The protocol is based
on a market where SANE processors bid for jobs to execute and selection
is based on a cost model that reflects the energy required to meet the
jobs requirements.

Keywords: concurrency models, heterogeneous systems, resource man-
agement, market models, ubiquitous systems.

1 Introduction

As CMOS nodes continue to shrink, the complexity of embedded systems grows.
This progress enables the manufacturing of low-power and low-cost consumer
electronic devices able to communicate through wired or wireless technologies.
Embedding computing power in everyday consumer products leads to the pos-
sibility of having systems comprising networks of thousands of nodes near each
user. This will provide everyone with the possibility of processing data any where
and at any time, moving people into the pervasive computing era [1].

The design of such systems requires a dramatic shift at every level of the sys-
tem as neither software nor hardware platforms are ready to face the issues raised
by this exciting new research challenge. These ubiquitous systems may comprise
a huge number of heterogeneous computing elements and will evolve around the
users following their needs and habits. Thus, their optimisation will be highly
dependant on their computing environment. Taking advantage of the huge com-
puting power offered by this collaboration of elements will require the dynamic
management of concurrency under conditions where computing elements may
appear and disappear at will. This is a significant challenge.
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Fig. 1. Generic SANE (may be a collection of SANEs) responds to two protocols: one
to perform work as families of threads the other to serve resources to external threads.
The latter uses negotiation between SANES based on energy credits.

To solve these issues, a disruptive approach is being promoted in the ÆTHER
European project, which embeds self-adaptivity at each level of the system1,
giving autonomy to the components and enabling the application designer to
concentrate on the application instead of having to cope with all possible events
in the lifetime of a computing resource in such a rapidly evolving environment.
For this purpose, we have introduced the SANE concept (Self-Adaptive Net-
worked Entity). This views the system as a collection of self-adaptive elements
(software, hardware or both) that can observe their environment and their in-
ternal performance so as to autonomously modify their behaviour and improve
some aspect of the overall system (e.g. performance, power used, etc.). These
elements collaborate with each other and share information and resources in or-
der to provide a global optimisation based on local and autonomous behaviour.
This approach requires a new architecture and protocols to enable the dynamic
sharing of resources and the consequent management of concurrency.

The mechanism that enables this distributed sharing of resources is the dele-
gation of responsibility for the execution of units of work, where that responsibil-
ity includes meeting any performance constraints specified. We consider here a
hierarchical cluster-based architecture, where each cluster presents a uniform in-
terface to its environment defining it as a SANE processor (or cluster of SANEs).
To be a SANE it must support the SVP model (SANE Virtual Processor) [2], see
Figure 1. This paper describes the resource management protocol that enables
delegation of work. SANEs are autonomous and from time to time may be given
jobs to execute; a local user may submit a job or one may be delegated from its
environment. In the latter case, the SANE will have contracted with an external
thread to run that job and to meet certain expectations in its execution, for
example performance. The contract is negotiated using a credit exchange, where

1 More details can be found on the projects web site: http://www.aether-ist.org/

http://www.aether-ist.org/
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the cost of executing a job is initially assumed to be the energy expended by
the contracted SANE. This can be measured in Joules. The contracting thread,
which may be acting on behalf of another SANE, transfers credit for the agreed
amount of energy to execute the work on the contracted SANE. In response,
the contracted SANE agrees to meet the deadlines or performance constraints
imposed by the contracting SANE.

2 The SVP Model and Its Resources

SVP is a dynamic concurrency model that defines a number of actions to enable
the execution and control of families of identical blocking threads. It is a hier-
archical model and any SVP thread may create subordinate families of threads.
The family (and its subordinate families) is the unit of work that is delegated
in a SANE system. Implementations of the SVP model have been demonstrated
and evaluated in software [3], based on the pthread library and in hardware
[4], based on instructions added to the ISA of a many-core processor. The SVP
model is captured by the five actions listed below and their implementation will
define the underlying protocol supporting the interfaces defined in Figure 1.

1. create - creates a family of indexed threads at a place with parameters
{start, step, limit} defining the index sequence. It is based on one thread
definition and returns a family identifier that uniquely identifies that family
for asynchronous control of its execution.

2. sync - blocks until the specified family of threads and all of their writes
to memory have completed. It returns an exit code that identifies how the
family terminated; in the case of break, it also returns a value from the
breaking thread and in the case of squeeze, it returns a family index value.

3. break - only one thread in a family can succeed in executing a break, which
terminates its family and all subordinate families. It returns a break value
of a type specified by the thread definition to the family’s sync action.

4. kill - asynchronously terminates a specified family of threads and all its
subordinate families.

5. squeeze - asynchronously terminates a specified family of threads and any
user-specified subordinate families so that it can be restarted at the squeeze
point, which is returned via each squeezed family’s sync action.

SVP has two essential roles. At the hardware level, it captures locality and
regularity, which are key factors in mapping a computation to a set of resources,
whatever those resources are. In the most efficient implementations, SVP threads
will map onto wires or synchronisers to support blocking and hence support the
scheduling of threads, instruction by instruction. Constraints in the model force
compilers to analyse code and transform code to support the model’s locality.
This is important in managing the asynchrony and locality that will be required
in future silicon systems. The model expresses this by restricting the commu-
nication between threads. The first child thread created may synchronise only
with the parent thread and other created threads their predecessor thread in the
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Fig. 2. Illustrates the SVP protocol between a thread and a place

family. Thus the model, rather than the program, exposes this to the compiler
allowing it to statically map a computation onto hardware. Examples are compil-
ing the language μTC to a multi-core ISA [5] or mapping and routing a family of
SVP threads to FPGA hardware. Using novel self-adaptation techniques, these
SVP hardware threads may be dynamically optimised using online-routing [6].
In all cases, the implementation will be captured as one or more binary modules
that force locality in communication.

SVP’s second role captures the dynamic distribution of work between differ-
ent implementations of the SVP model. This is achieved by binding an abstract
resource to a unit of work on the creation of a family of threads. That resource
abstraction is the SVP place which is provided dynamically by a place server. An
implementation of place provides a network address and a token for authentica-
tion when creating work there. For example, when a place is served, the address
is used to implement the protocol, in whatever network setting the SANE exists.
More importantly, to avoid unauthorised use of a place, the place server gives
both the place and the thread requesting it a token, which must be matched
during the SVP create protocol. Figure 2 illustrates the events in this proto-
col. It should be noted that the create action in this role is a form of a remote
procedure call.

The use of place as an abstraction allows the dynamic binding of resources
to code when creating a family of threads. The place also identifies a contract
between two SANEs when delegating work, as illustrated in Figure 1, and hence
it identifies a set of resources or virtual resources on which the work will be
executed. This may be a partition of a multi-core chip, it may be a domain in
an FPGA chip that is dynamically configured to execute the family of threads
or it may even be a processor or cluster of processors in a Grid. Each will have
its own implementation of the SVP actions and tools to compile μTC into that
implementation. To achieve this abstraction, every implementation of SVP must
deal with two pre-defined places and variables of type place:

– The local place is used to tell the SVP implementation that all threads in this
family should be kept local to the creating thread, which may have different
interpretations in different implementations.
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– The default place is resource naive and the actual place will be determined
by the mapping and scheduling algorithms of a SANE’s implementation.

– A place variable has a meaning dependent on the specific implementation of
SVP. It is set by a place server and used as a parameter of the create action.

The place concept is a heavily overloaded: it identifies a contract between
a thread and a SANE, which will specify a level of service; it also embeds an
address and a security key, which are used in the implementation of the create
action to delegate the work. Once a SANE receives some delegated work, locally
that work becomes resource naive and will be mapped and scheduled by the local
mapping and scheduling threads (see Figure 1). These threads use the place to
identify the contract negotiated and hence locate the specific constraints on
execution agreed to. They must then organise the work to meet the constraints
on the contract.

3 Resource Negotiation in SVP

A goal in designing SVP was to give a concurrency model that is as ubiqui-
tous in its application as the sequential model. The two roles of SVP described
above reflect a separation of concerns between algorithm design and concur-
rency engineering. Resource-naive code (using creates with the default place),
like the sequential model, has properties of determinism and deadlock freedom
under composition. An SVP implementation is therefore free to map and sched-
ule threads as it likes. However, introducing specific places enables concurrency
engineering and the model becomes quite general. The key element here is the
introduction of mutually a exclusive place that sequentialises all work delegated
to it. In implementing resource management we must also manage broadcast
and deadlock induced in the model by resource failure. All of these issues are
discussed below before the resource server protocol is presented.

Mutual exclusion in SVP. Non-deterministic choice is required to manage
exclusivity of resource use in a distributed environment. The place server must
offer its service to a number of client threads that all compete for the available re-
sources. This and hence general concurrency engineering in SVP is implemented
by providing mutually exclusive places. The processor resource rather than a
memory lock is deemed more appropriate for ubiquitous concurrency and also
allows a completely asynchronous memory model. A mutually exclusive place
sequentialises concurrent requests to create a family of threads. As places ab-
stract resources, this is just another overloading of the concept of place that can
be mapped to its implementation. For example, in the pthread implementation
of SVP [3], a mutually exclusive place simply uses a mutex. In the ISA ver-
sion of SVP [4], mutual exclusion in a single processor is implemented by class
bits in the place variable and corresponding state in the processor. The state
indicates whether an exclusive family of that class is currently executing and
hence sequentialises create actions in any of the classes. The resource manage-
ment protocol is called the SEP (the System Environment P lace), which is the
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mutually exclusive place at which external threads create the resource manage-
ment protocol’s threads to request and obtain places for their exclusive use in
the delegation of work.

Broadcast in SVP. Because SVP is a deterministic model, which does not
include any communication primitives, broadcast in the model must be imple-
mented as a create action to one of a number of known places. For example, if a
SANE cluster comprised n SANEs, where each SANE provided an SEP interface
at a place, which was stored in the array of places SEP cluster[n], then the
μTC code below would broadcast a request to each SEP interface in the clus-
ter. N.b. the create parameters are: (family id; place; start; limit; step; block)
followed by a thread definition. In this code, n threads in family fo are created
locally, each of which creates an SEP request at an SEP interface.

int n; place SEP cluster[n]; family fo;
...
create(fo;local;0;n-1;1;){

family fi; index i;
create(fi;SEP cluster[i];0;0;1;) SEP request(...);
sync(fi);
}

sync(fo);

Graceful degradation in SVP. Now consider what happens to this code if one
of the SANEs in the cluster suddenly drops out before completing the request.
The code deadlocks, as one thread in family fo will wait forever for its sync and
hence family fo will never complete. One solution to this, and in general for any
situation that requires graceful degradation, is a time-out on the create action,
which allows family fo to wait a finite time before it completes. This can be
implemented using a time-out thread, which kills family fo after a given time.

4 Resource Management Protocol

The implementation of the resource negotiation protocol in a SANE environ-
ment, like the SVP protocol over which it is implemented, is dependent on a
SANE’s level in its hierarchy. The generic protocol must provide for the require-
ments of systems at many different levels, from chip to board level and at many
levels in a network hierarchy. The protocol comprises five stages: announce, re-
quest, bid, agree, delegate. Specific implementations may omit stages that are
implicit in the design at that level. For example, the first stage requires a SANE
processor to announce its capabilities to the rest of the system. In an on-chip
environment, the capability of each SANE processor may be known a-priori and
this stage may be omitted. However, for a SANE processor at the board level
attached to a network or coming into range of a wireless network, this stage
would be mandatory.
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Fig. 3. Remainder of protocol, i.e. request, bid, agree and delegate, is undertaken when
a thread requires resources to undertake a computation

Announce. In the first stage of the protocol, a SANE joining a cluster announces
its capabilities using a common format for defining both resource capabilities
and requirements. The protocol uses the concept of a root SEP, which is not
necessarily a fixed place but a place variable via which all resource negotiation
takes place. The root SEP and its possible implementations are described in more
detail in Section 5. On joining a network, some low-level communication protocol
will first be established and on top of that a protocol for implementing SVP. The
latter will initialise the joining SANE with a place to initiate the SEP protocol;
that place is the root SEP and is similar in concept to the router in a conventional
network. The joining SANE announces its arrival by creating the SEP announce
thread at the root SEP. Only one parameter is required, which is a pointer
to the record(s) defining its capabilities. Those capabilities are defined using a
domained ID that defines a set of known functions on the network. The domained
ID serves to identify the processing domain of the work (signal processing, image
processing, etc.) and the particular function offered or required. The root SEP
can filter any requests for resources by the capability requested and hence reduce
the amount of communication required. It does not make sense, for example, to
send a request based on image processing to a SANE that does not implement
any image-processing algorithms. The capability is defined as a processing rate
on this set of functions. Note that the domains may represent functions at various
levels of granularity, i.e. from arithmetic operations to complex functions. This
step is illustrated in the μTC code below. The SANE may also withdraw its
capabilities from the pool using the SEP withdraw thread. Of course it may also
be withdrawn in a less graceful manner!

place root SEP; family f ann;
struct capability∗ my capability;
...
create(f ann;root SEP;0;0;1;;) SEP announce(my capabilities);
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Request. Having announced itself to its environment, a SANE may now make
or receive requests for resources. These requests are again made to the root SEP,
which will in turn forward the requests to any SANE in the environment that
is capable of meeting the request. This is defined as a required performance on
a given function but also includes an elapsed time for which the resources are
required. A timeout is attached to each request, which is the validity of the
invitation to tender from the contractor. The request (and subsequent bids) are
identified by the family identifier of the thread created in making the request.

Bid. Each bid provides a yes/no response to the request and if yes, it will
provide the overall cost for meeting the request, the time required to configure
the resources, a lifetime (the provider will reserve these resources for this amount
of time), the SEP to which agreement must be sent and a limit on the time the
provider is able to provide resources, which may be less than or greater than
the elapsed time requested. The use of energy as a cost measure allows the
optimisation of the complete SANE system based on a (time, energy) couple.
This step is illustrated below in μTC and illustrated in Figure 3.

place root SEP; family req f;
struct resource* my request; struct bid* my bid, *good bid;
...
create(req;root SEP;0;0;1;;) SEP request(my request, my bid);

Accept. When the requesting thread receives a list of bids, it will select one
or more bids to meet its requirements and agree any required. In response, a
provider will return a place that defines the contracted resources. The family
identifier of the initial request for resources identifies the contract. This stage is
equivalent to signing the contract and, in a full market system, will result in a
credit transfer from the requesting SANE to the providing SANE.

place root SEP work place; family f req, f;
struct bid* my bid, good bid;
...
create(f;good bid*.place;0;0;1;;) SEP agree(f req,work place);

Delegate. All that is left to do when the work place has been returned is to
create the delegated work at that place and to signal the release of that place
when that work is complete.

place root SEP work place; family f req, f;
struct bid* my bid, *good bid;
...
create(f; work place;;;;;) my work();
...
sync(f)
...
create(f;*good bid.place;0;0;1;;) SEP release(work place);
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5 The Root SEP

The root SEP is a conceptual place and admits many different implementations.
It is first and foremost, the place to which a SANE announces itself and to
which it directs requests for resources. It is assumed that directly or indirectly,
all known SANEs in a cluster may be reached from this place. Two examples of
its implementation are given below that illustrate the range of possibilities.

A unique root SANE. The root SANE is the physical root of the cluster and
is given responsible for maintaining a complete picture of the capabilities of all
SANEs that have announced themselves within the cluster. It also provides an
interface to the next level of hierarchy, which is called the environment in this
paper. In this case, the implementation is trivial, at initialisation this SANE
provides any joining SANE with its root SEP which is then used as a target for
all announce and request threads. The only problem in this implementation is
that it relies on the root SANE being fault tolerant, as it is a single point of
failure in the entire system. Note that if a single root SEP becomes overloaded,
its resources can easily be partitioned and allocated to two root SANEs known
by two subsets of SANEs.

Every SANE is the root SEP. Here, every SANE in the cluster receives
announcements from all SANEs joining the cluster. In this case, on initialisation,
each SANE must receive the SEP of all SANEs in the cluster and is responsible
for announcing itself to all of them. Now it can broadcast its own requests to
the cluster. This solution has maximum redundancy.

Other solutions provide various forms of partitioning, e.g peer-to-peer style ap-
proaches, where a particular SANE may know only of its immediate neighbours
and where broadcast may proceed in multiple hops over subsets of the cluster.

6 Related Work

The use of a distributed protocol for problem solving is not new. In 1980, Smith
proposed the contract net protocol to specify distributed communication and
control in a loosely-coupled, problem-solving environment [7]. In this protocol,
task distribution used a negotiation process to decide which tasks were executed
where. This protocol (and other work within ÆTHER [8]) adopted a managed
approach to work delegation, i.e. one node, the manager, assumes responsibility
for monitoring the execution of a task and processing the results of its execution.
In the approach described here, both execution and the responsibility for meeting
any execution constraints is delegated. The use of market models is not so new
but we adopt a market model only required to provide modulation of a cost
based on energy, where the market provides a distributed mechanism to detect
and react to load. This is not discussed in detail in this paper, which focusses
on the architecture and protocol. More information on market-based resource
allocation can be found in the following thesis [14].

Mapping and scheduling workflows (a set of tasks with sometimes complex de-
pendencies) onto gtrids, e.g. GridFlow [9] and Nimrod-G [10] has similar
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requirements. Here, a more pragmatic and coarse-grained approach is adopted,
based on job-submission where communication between tasks uses files. These
approaches typically use a cost/deadline resource management model. More re-
cently, e.g. [11] and [12], there has been a trend towards using a just-in-time ap-
proach. Here, instead of analysing a workflow and trying to optimise a static sched-
ule, resources are allocated on a first come, first served basis. The work described
here differs from grid developments in a number of significant ways. Perhaps the
first and most significant is that the ÆTHER project aims to build a complete
programming solution to such distributed environments and in doing so, it has de-
fined a model of concurrency that captures both work and resources in an abstract
manner in a single integrated model [4]. We also adopts a just-in-time approach
to scheduling but in our case this is required as the underlying SVP model is im-
plemented at the level of instructions in a processors ISA and adaptations to load
may occur at MHz rates, giving little time for planning a schedule. Also note that
this just in time approach adapts to situations where there may be a significant
latency in setting up a remote resource to perform a computation. Two examples
are just-in-time compilation for different instruction sets and device configuration
in FPGA like devices. In ÆTHER there is considerable interest in the design of
run-time support for reconfigurable SoCs [13].

7 Summary

This paper has presented the architecture of a hierarchical SANE system, where
resources are shared between SANEs by delegating both work and the respon-
sibility to meet the deadline or requirements for that work. This architecture
builds upon the SVP model of concurrency that provides an abstraction of work
as a family of threads and an abstraction of resources as a place. The proto-
col provides a place server to define the place at which the family of threads is
executed once the protocol has been completed. The protocol proposed for nego-
tiating the use of resources is based on a cost model that uses the required energy
as a baseline cost, to be modulated by market forces. A baseline implementation
could use cost as simply a selection criteria with no credits being exchanged at
all. In this way threads could collectively minimise energy consumption in the
system. With a cost model however much richer scenarios can be envisioned,
where the cost, although based on energy, is dependent on market conditions,
such that at periods of high demand cost would rise. In such a scenario, one can
imagine, as with our financial world, a number of SANEs cornering the market
on energy credits by speculating in the market. Such cost policies and mapping
strategies will be evaluated within the remaining period of the ÆTHER project
in order to understand their emergent behaviour.
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Abstract. Biological research in agriculture needs a lot of specialised
electronic sensors in order to fulfil different goals, like as: climate moni-
toring, soil and fruit assessment, control of insects and diseases, chemical
pollutants, identification and control of weeds, crop tracking, and so on.
That research must be supported by consistent biological models able to
simulate diverse environmental conditions, in order to predict the right
human actions before risky biological damage could be irreversible. In
this paper an experimental distributed network based on climatic and
biological wireless sensors is described , for providing real measurements
in order to validate different biological models used for viticulture appli-
cations. First, the experimental network for field automatic data acquisi-
tion is introduced , as a system based in a distributed process. Following,
the design of the wireless network is explained in detail, with a previous
discussion about the state-of-the-art, and some measurements for viti-
culture research are pointed out. Finally future developments are stated.

Keywords: sensor systems, sensor networks.

1 Introduction

The experimental wireless network is deployed in a peninsula surrounded by two
large sea arms called “rias” in Spanish language. In that peninsula, located in the
northwest of Spain (near the northern border of Portugal), the vineyards have four
main productive zones called: Meaño, Cambados, Ribadumia and Meis (Fig. 1).

Currently differences in productivity and quality of grapes are broadly related
with relative heights and sea proximity from each of four zones but neverthe-
less more rigorous biological and climatic research [1,2] must be done, in order
to provide accurate biological models for ecological simulations applied to viti-
culture. For that reason multidisciplinary work must be done among electronic
engineers, biologists and ecologists.

Each zone has an electronic zonal station (EZS), in order to bring differences
(microclimates), in measurements like: temperature, relative humidity, leave hu-
midity, soil temperature, solar radiation, rain gauge (tipping bucket), and other
biological sensors. A data logger and a radio modem is included in each EZS in
order to sense, process and transmit the data, enabling the development of an
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Fig. 1. Peninsula photograph

automatic wireless sensor network (WSN), which nodes (the EZSs) are accessi-
ble from a wide area. These wireless communication capabilities allow that data
could be remotely monitored. The implementation of a warehousing approach, al-
lows the data to be stored in a centralized database that is responsible for query
processing. The stored data will be used for biological and ecological models.

Firstly the paper describes the different elements employed in the experimen-
tal network. These include (a) the wireless nodes (b) the base station (c) the
repeaters and (d) the data management. Finally some measurements from EZSs
are depicted.

2 Data Acquisition System

The electronic zonal stations (EZSs) are connected with the base station (BS)
by the UHF band (not licensed) between 869.4MHz to 869.65MHz, and the BS
is also connected through Internet to the Data Base (DB), the biological and
ecological models (BEMs), and to the Web access (Fig. 2). Each zonal station
comprises an UHF radio modem that transmits the sensors information to the
BS through a data call. A powering solar panel (PSP) is located near each EZS
for feeding its circuits. In order to reduce costs, the BS makes a call to all the
EZSs every 24 hours by means of a polling procedure [3]. During these calls the
EZSs send all the information that has been stored on that period. Therefore
the BS periodically executes the reading data process and later database storage
of the received information, through an Ethernet local area network.

2.1 Data from Sensors

An electronic zonal station (EZS) is the basic acquisition equipment of the dis-
tributed system, that carries out the data registration (measurements and pro-
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Fig. 2. Network architecture and database interfaces

cessing), and the communication with the base station (BS). In this way, each EZS
comprises an automatic measurement unit with data transfer capability. The data
acquisition process is made inside the EZS by the sensors and the data logger. Each
EZS comprises the following sensors: temperature, relative humidity, leave humid-
ity, soil temperature, solar radiation, rain gauge (tipping bucket), and other bio-
logical and ecological features depending on running models [4].

All that sensors are integrated in the data logger. The data logger is the EZS
nucleus, it captures the data from each sensor, automates the measurements,
synchronises the data and manages the communications. The data transmission
is carried out by means of the data logger and the UHF radio modem connected
to it. Next, the data captured by the EZS is sent to the database (DB), through
the base station (BS), where they are saved. The communication process setting,

Fig. 3. EZS data acquisition and communications system assembled in the protection
box
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Fig. 4. Final assembly and EZS installation

through the UHF radio modem connected to the data logger, allows the control
and programming of several tasks as well as the acquisition of stored data.

The data captured by the data logger are organised in registers. The registers
comprise the sensor outputs as well as the time and date. These registers are then
sent to the storage system where they are saved for a future access. The data
logger is programmed for capturing and storing the sensors information each
minute. Due to the limited capacity of the storage system integrated in the data
logger, the data can only be stored during a day (24 hours). Figure 3 illustrates
the data logger, the storage system, the UHF radio modem and connections
with the sensors and electrical supply. Al these elements are placed inside a box
which protects them from the weather conditions. This box and all the sensors
are fixed to a metallic base located at the site (Fig. 4).

3 Global Data Management

The information obtained from the EZSs are collected by the BS and stored in
the DB for later process, analysis and query. The BS requests and compiles the
data from the different EZSs to store them in the DB. Also the BS is provided
with an UHF radio modem to make the polling query of each EZS in the wireless
network. Therefore the BS is a PC connected to a wireless network and Internet
that executes the developed program to perform its operations flowchart. The
figure 5 shows this flowchart.

Since all the measured data must have the same time reference for its later
process, the BS obtains the system reference clock from a real time network server
by the NTP synchronization protocol (Network Time Protocol). So after the date
have been obtained, a time synchronization test is verified for the EZSs clocks,
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Fig. 5. BS operations flowchart

to determine if the collected data can be considered valid. If this is the case, the
information is stored directly in the DB. Otherwise the problem is corrected (if
it is possible), it is notified by e-mail and/or a message, and finally the data and
the error information are stored. In this way is possible to know exactly when
and what type of errors took place and, depending on this information data can
be corrected.

The data from the EZSs are centralized in a relational database. This DB
presents one interface with the BS through which all the system information is
introduced, and three interfaces to access this information: general data access,
access to interesting data to analyse viticulture features, and query of data for
providing models (Fig. 5). The interface between BS-DB and queries-DB are
executed directly by means of ODBC (Open Database Connectivity).

The general data access will directly take place through an Internet accessible
Web page. Whereas for queries related to the analysis of viticulture features
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Fig. 6. Communication example between elements, interfaces and layers

and models, the access is made through specific views for each type of study [3].
Figure 6 shows an example of the EZS data management. This picture illustrates
the structure of communications among equipments, interfaces and layers.

4 The State-of-the-Art and the Implemented Network

Past decade has been very fruitful in the development and application of several
standards for mobile, nomadic and fixed wireless networks related with sen-
sors [5,6,7]. Some specific problems about this kind of networks have been well
studied, like: energy efficiency due to collisions, overemitting-receiving, control
of packets and idle listening; scalability and changes adaptation in network size,
node density and topology; communication paradigms like node-centric, data-
centric and position-centric; and many others.

Nevertheless this great researching effort over wireless networks for sensors,
there is no any accepted MAC for them, because this kind of sensor networks
has a very big dependence of the application. Recent surveys about the most ad-
vanced wireless networks like MANETs [8,9] show poor real results in front of ex-
pected ones, because the great complexity involved in simulated MAC protocols,
on big programming tools, was not after validated with implementation, inte-
gration and experimentation over real equipment (chips, microcircuits, modems,
antennas, and others). In this way, a particular field of application, called “wire-
less sensor networks” (WSN) is proposed for environmental monitoring, industry
and precision agriculture, among other sectors of activity. The WSNs are fea-
tured by a stronger interdisciplinary collaboration for creative projects, and a
change in the communication paradigm from node-centric to data-centric one,
because the main point is the transfer of data from the application field, and
not the communication between all the network nodes.
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Fig. 7. Measured rain plot

4.1 The Wireless Sensor Network (WSN)

Several comparatives among general wireless standards like ZigBee [10,11], Ultra
Wide Band (UWB) [12], Bluetooth [13] and WiFi [14] have been made in order to
evaluate some examples of application included industrial wireless sensors. Also,
more specific WSN applications could be found about environmental research
like: hydrology [15], fire monitoring [16], deep ice [17], and others [18].

Given the hilly nature of the vineyard zones (Section 1), the coverage chal-
lenges for linking the EZSs with the BS (Section 3) were founded in power, data
speed and acceptable error ratio. For example, in the Meis zone the coverage
area was over 5km, with difference in heights about 200m, very prone to inter-
pose obstacles in the line-of-sight (LOS) among EZS-BS. In order to achieve a
wireless network with very low cost and reduced power consumption, because
static nodes are transmitting infrequently (low duty cycle) only two-way small
data packets, the European ISM band (868-870MHz) was selected, where one
channel with a data rate of 20kbps is available [13]. In this ISM band the used
radio modems for linking EZS-BS, have the following features: 10-500mW of
transmitting power, 25kHz of channel spacing, half-duplex communication, 10%
duty cycle and 36 seconds of maximum emission time (must be controlled by
the data logger, Section 2.1). To avoid an obstacle in the LOS between the
BS and the EZS, a repeater station (RS) is inserted with other ISM radio mo-
dem and a directive antenna, linking the EZS (2,1km) with the BS (5,17km).
Figure 7 shows an illustrative example of measured rain series carried out be-
tween EZS-RS-BS in the Meis zone.
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5 Future Developments

Experimentalwork over the implementedWSN is beingmade in the following lines:

– Addition of new climatic and biological sensors to the EZSs.
– Deployment of new EZS over the four different vineyard zones for providing

more spatial resolution to biological and ecological models.
– Design of a wireless broadband (20Mbps) network in order to provide crop

tracking by real time images, and infrared cameras (zonal isotherm maps), by
WiMax (IEEE 802.16) equipment [19,20] over the 5GHz ISM band (Fig. 2).

– Integrate those images in the global data management system (Section 3), for
giving to the biological and ecological researchers new knowledge for future
enhancement of models.

6 Conclusions

The authors have developed an experimental distributed network based on the
WSN paradigm for wireless sensors. This WSN is based on the European ISM
band for providing a low cost and low power consumption network, bringing
real measurements to validate different biological and ecological models used for
viticulture applications. Also a global data management system is designed to
integrate consistently the measured data in the models. New developments in
the experimental wireless network are being tested to add real time images and
infrared cameras information, by means of broadband network standards.
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from MARTÍN CÓDAX CELLAR enterprise, for the kind permission to deploy
the experimental wireless network in their properties and facilities.

References

1. Perry, T.S.: Capturing climate change. IEEE Spectrum 39(1), 58–65 (2002)
2. Gail, W.B.: Climate control. IEEE Spectrum 44(5), 20–25 (2007)
3. Mariño, P., Fontán, F.P., Machado, F., Otero, S.: Distributed sensors network ap-

plied to the rain impairment study on radiocommunication systems. In: Industrial
Informatics, 2006 IEEE International Conference, Singapore, pp. 1036–1041 (Au-
gust 2006)

4. Poza, F., Mariño, P., Otero, S., Machado, F.: Programmable electronic instrument
for condition monitoring of in-service power transformers. IEEE Transactions on
Instrumentation and Measurement 55(2), 625–634 (2006)

5. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)



Climate and Biological Sensor Network 237

6. Niculescu, D.: Communication paradigms for sensor networks. IEEE Communica-
tions Magazine 43(3), 116–122 (2005)

7. Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless sensor networks: a
survey. IEEE Communications Magazine 44(4), 115–121 (2006)

8. Conti, M., Giordano, S.: Multihop ad hoc networking: The theory. Communications
Magazine, IEEE 45, 78–86 (2007)

9. Conti, M., Giordano, S.: Multihop ad hoc networking: The reality. Communications
Magazine, IEEE 45, 88–95 (2007)

10. Prophet, G.: Is zigbee ready for the big time? EDN Europe (August 2004)
11. Wheeler, A.: Commercial applications of wireless sensor networks using zigbee.

Communications Magazine, IEEE 45, 70–77 (2007)
12. Oppermann, I., Stoica, L., Rabbachin, A., Shelby, Z., Haapola, J.: UWB wire-

less sensor networks: UWEN - a practical example. IEEE Communications Maga-
zine 42(12), 27–32 (2004)

13. Willig, A., Matheus, K., Wolisz, A.: Wireless technology in industrial networks.
Proceedings of the IEEE 93(6), 1130–1151 (2005)

14. Kunz, M.: Wireless lan planning is a science, not an art! The Industrial Ethernet
Book, pp. 32–34 (September 2006)

15. Moore, R.J., Jones, D.A., Cox, D.R., Isham, V.S.: Design of the hyrex raingauge
network. Hydrology and Earth System Sciences 4, 521–530 (2000)

16. Ruiz, L.B., Braga, T.R.M., Silva, F.A., Assuncao, H.P., Nogueira, J.M.S., Loureiro,
A.A.F.: On the design of a self-managed wireless sensor network. IEEE Communi-
cations Magazine 43(8), 95–102 (2005)

17. Guizzo, E.: Into deep ice [ice monitoring]. IEEE Spectrum 42(12), 28–35 (2005)
18. Cutler, T.: Case study: wireless, serial and etherner link for enviromental project.

The Industrial Ethernet Book, pp. 37–40 (November 2005)
19. Ghosh, A., Wolter, D.R., Andrews, J.G., Chen, R.: Broadband wireless access

with wimax/802.16: current performance benchmarks and future potential. IEEE
Communications Magazine 43(2), 129–136 (2005)

20. Livingston, M., Franke, R.: Choosing a 802.16 radio for use in a wimax application.
Embedded Systems Europe, 31–34 (July 2006)



Monitoring of Environmentally Hazardous

Exhaust Emissions from Cars Using Optical
Fibre Sensors

Elfed Lewis1, John Clifford1, Colin Fitzpatrick1, Gerard Dooly1,
Weizhong Zhao2, Tong Sun2, Ken Grattan2, James Lucas3, Martin Degner4,

Hartmut Ewald4, Steffen Lochmann5, Gero Bramann5,
Edoardo Merlone-Borla6, and Flavio Gili6

1 Department of Electronic & Computer Engineering, University of Limerick, Ireland
2 School of Engineering & Mathematical Sciences, City University,

London EC1 0HB, UK
3 Department of Electrical Engineering & Electronics, University of Liverpool,

Liverpool L69 3GJ, UK
4 Institute of General Electrical Engineering, Albert Einstein Str. 2,

University of Rostock, D-18051, Germany
5 Department of Electrical Engineering & Computer Science, Hochschule Wismar,

Philipp-Mueller Str, D-23952, Wismar, Germany
6 Advanced Manufacturing and Materials, Centro Ricerche Fiat, Strada Torino 50,

Orbassano (TO), Italy

Abstract. Results are presented for on board sensing of the Gases NO,
NO2, SO2 and CO2. The optical fibre sensor was connected downstream
of the Diesel Particle Filter (DPF) of a Fiat Croma and the measure-
ments from the optical fibre sensors were recorded simultaneously using
high specification reference instrumentation mounted in the boot of the
car. In this way the results from the optical fibre sensors and the refer-
ence instrumentation could be directly compared. The results from the
optical fibre sensors indicate that they are capable of measuring single
ppm values of NO, NO2 and SO2 as required by the EURO IV standards
and CO2 up to a concentration of 15% which is more than adequate
for in car monitoring. The optical fibre sensors therefore performed well
when compared to the reference instrumentation in tests conducted on
a rolling road and during “free driving” on an urban road.

Keywords: mid-infrared gas detection; UV gas detection; in-fibre Bragg
grating temperature sensor; optical fibre sensor; vehicle emissiondetection.

1 Introduction

Automotive emissions typically consist of water vapour, carbon dioxide (CO2),
carbon monoxide (CO), oxides of nitrogen (NOx), oxides of sulphur (SOx), smoke
particles (diameters of 0.05μm to 1μm) and also particulate matter (diameters
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greater than 1μm). Under perfect combustion conditions the following relation-
ship exists:

Fuel(CxHx) + Air → CO2 + H2O (1)

As carbon dioxide (CO2) and water vapour (H2O) are both present as trace
gases in the atmosphere, no pollution would result from this process. However,
in reality perfect combustion does not occur and the following relationship exists
as fuel is burnt in an engine:

Fuel(CxHx)+Air → CO2+H2O+CO+SOx+NOx+PM+CxHx+smoke (2)

Research has shown that each of these species is a threat to either human health
or the environment [1]. Carbon monoxide (CO) is known to be poisonous to
humans at concentrations above 400 parts-per-million. CO2 is not strictly con-
sidered a pollutant as it exists naturally as a trace gas in the atmosphere. It is
believed that the relatively high levels of CO2 produced by combustion are a
prime contributor to global warming [2]. CO and CO2 have high absorption in
the mid-infrared wavelength range [3], as shown in Fig. 1.

(a) CO (b) CO2

Fig. 1. Theoretical Absorption Spectra for CO and CO2 Gases [3]

Similarly, detection of the other gases namely SO2, NO and NO2 is possible
in the UV/Visible part of the spectrum. The theoretical spectra for these gasses
are shown in Fig. 2.

Optical fibre sensors are particularly well suited to monitoring vehicle exhaust
emissions, as they can be made small, lightweight, and as they are made purely
from glass (doped for high temperature measurement). This coupled with quartz
lenses (for UV) or chalcogenide with Calcium Fluoride Lenses for Mid IR means
that they can withstand the high temperature of the gases present in the car
exhaust [4,5].

2 Theoretical Background

The Beer-Lambert Law is used to calculate how much incident radiation is ab-
sorbed by a sample and has been well documented in the literature [6]. The
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Fig. 2. Theoretical Absorption Spectra for NO, NO2 and SO2 Gases

sample may be an aqueous solution or a gaseous quantity. If radiation of inten-
sity I0 is directed at a sample of path length l, radiation of intensity It leaves
the sample. The absorbance A can be defined as:

A = log10
I0

It
= εcl (3)

where ε is the molar absorption coefficient of the species and c is the concentration
of the sample. The ratio It/I0 is defined as the transmittance, T and from [6]

T = 10−εcl =
It

I0
(4)

This relationship was used to determine the concentration of the gas based upon
experimental results of absorption observed in the mid infra red and UV part of
the spectrum. The Reference Forward Model (RFM) was developed at Oxford
University to simulate the absorption spectra of gases such as CO in the HITRAN
Database [7]. These are calculated for different concentrations, pressures, and
temperatures. It was possible to use the RFM to vary the path length of the
sample and thus simulate the experimental results in the wavelength range of
interest (i.e. within the pass band of the optical filter fitted to the pyroelectric
detector).

Simulations were performed at various concentrations (1000ppm, 800ppm,
etc) using RFM, the absorption spectra at these concentrations were then inter-
polated using MATLAB against the filter wavelength data over the same wave-
length scale as the transmission spectrum of the band pass of the pyroelectric
detector. The absorption spectrum was converted to a transmission spectrum
and this was multiplied by the filter transmission spectrum. The resulting spec-
trum corresponds to the transmission by CO at a particular concentration over
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Fig. 3. A Comparison of the Transmission Spectra for CO at 0ppm and 7000ppm
Calculated Using RFM

Fig. 4. A Comparison of the Transmittance Values Generated by the RFM Simulation
and Those Produced Experimentally for CO

a path length of 360mm as measured by the pyroelectric detector. The results
of the simulation are shown in Fig. 3 for concentrations of 0ppm and 1000ppm
of CO for a path length of 360mm, at 23�C and 1 bar of pressure (i.e. ambient
temperature and atmospheric pressure). By calculating the area under the curve
at a particular concentration, the theoretical values for I0 and It in Eq. 4 were
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calculated. The area under the curve at 0ppm corresponds to I0, while the area
under the curve at a particular concentration corresponds to It.

Fig. 4 shows the analysis of the experimental 200ppm step test. The trans-
mittance was calculated as the concentration of CO in the cell was increased
from 0ppm (when the cell was filled with N2) to 1000ppm and then decreased
in steps of 200ppm.

It is clear that the theoretical values are in close agreement with the mea-
sured values. The largest deviation (1%) is at a concentration of 1000ppm. The
difference between the measured and theoretical results can be attributed to
experimental uncertainty e.g. electrical noise on the outputs of the pyroelec-
tric detectors. This could be reduced in future by improved the coupling of the
emitter and detector to fibre which would increase the amount of radiant flux
arriving at the detector which would increase the signal to noise ratio.

3 Experimental Results

3.1 Gas Concentration Measurement in the Mid Infra Red Range

The experimental set up for measuring CO2 in the mid infra red region in the
exhaust system of the demonstrator vehicle located in the test facility at CRF,
Italy is shown in Fig 5. The components of the optical system and comparison
to other research have been described in detail by Mulrooney et al [8]. A Dell
Latitude D610 notebook equipped with a National Instruments PCIMCIA 6024E
data acquisition card was used to acquire the data on site and a Lab View
�Virtual Instrument was used to store these voltages to a file.

The transmission mode optical fibre sensor (referred to as the straight sen-
sor in Fig. 6) was connected to the exhaust system of the vehicle as in Fig. 5
and the output of the optical fibre sensor and reference instrument were recorded

(a) Close up: A) Fibre in, B) Gas Ab-
sortion Cell, C) Fibre out, D) Exhaust
Pipe Section, Manufactured by CRF

(b) Relative to car showing the reference
instrumentation

Fig. 5. Mid IR Sensor on the Exhaust Line of the Fiat Croma Demonstrator
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Fig. 6. CO2 concentration recorded during the NEDC test cycle for the Fiat Croma
on the roller test bench. Simultaneous measurements shown for the transmission mode
optical fibre sensor and reference instrumentation.

simultaneously as the car was driven on roller test bench in compliance with a stan-
dard test known as the NEDC driving cycle. These results are shown in Fig. 6.

It is clear from Fig. 6 that the Optical Fibre Sensor is capable of faithfully
reproducing the variation of CO2 concentration over the whole NEDC cycle.

3.2 Gas Concentration Measurement in the Ultra Violet Range

The system for measuring the gases NO, NO2 and SO2 in the UV range is shown
schematically in Fig. 7.

Fig. 7. The gas sensor for measuring in Ultra Violet range
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Fig. 8. The UV gas sensor mounted underneath the car

Fig. 9. NO2 Test Results Under the Car With Simultaneous Reference Instruments
Recording

The cell shown in Fig. 7 was enclosed in a steel flanged section which was
inserted in line in the exhaust system under the car. This is shown photograph-
ically in Fig. 8.

The cell was used to record the levels of NO, NO2 and SO2 for a full cycle of
the standard acceleration/ deceleration test with the car mounted on a rolling
road at the test facility of CRF in Turin. The results of these tests corresponding
to NO2 are shown in Fig. 9.

It is clear from Fig. 9 that the value of NO2 recorded on the optical sensor
faithfully reproduces the values measured on the reference (lab based) instru-
mentation. The optical fibre sensor has therefore been proved to be capable of
measurement within the exhaust of the vehicle.
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Fig. 10. The Optical Fibre Sensor for Measuring Temperature

Fig. 11. The FBG Optical Fibre Sensor Mounted on the Experimental Exhaust System
at the Laboratory of CRF, Turin

3.3 Optical Fibre Temperature Measurement

As well as measuring the gas concentrations using optical fibre technology,
the OPTO-EMI-SENSE project has been concerned with the measurement of
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Fig. 12. Temperature Measurements on the Experimental Exhaust Test Facility with
Simultaneous Reference Instruments Recording

temperature of the exhaust gases using in-fibre Bragg Gratings. The system for
the temperature measurement is shown schematically in Fig. 10.

The FBG-based temperature sensor system utilizes a broad band (Super-
luminescent LED) light source (centred on a wavelength of 1550 nm) and a
Fabry-Perot tunable filter for FBG wavelength interrogation. The temperature
sensor located on the test exhaust system at the laboratory of CRF is shown
photographically in Fig. 11 and the results of a typical temperature cycle corre-
sponding to values encountered in a standard test cycle shown in Fig. 12.

4 Conclusions

Optical fibre sensors suitable for the detection of exhaust gas emissions and tem-
perature have been described in this paper. The development of the sensors are
novel as they uses a low cost and compact components coupled to optical fibre,
to provide a practical solution for the measurement in the harsh environment of
the car exhaust system.

This sensors have proved to be capable of detecting gas concentrations as low
as single ppm values for NO, NO2 and SO2, and up to 20 % concentration of CO2

in the exhaust of a car. An analysis of these results using the Reference Forward
Model (RFM) and MATLAB indicated that the measured and theoretical values
are in close agreement. Optical Fibre Temperature Measurements have been
performed in the exhaust of a Diesel engine and these have demonstrated the
sensors capability of accurately (to within one degree) measuring the exhaust
gas temperature over a range of many 100s degrees centigrade (at least 800 �C).
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Abstract. Wireless Sensor Networks (WSN) can be used in various applications
for home and industrial environments. The main challenges in these applications
come from the requirement of collecting and presenting continuously changing
sensor data. Powerful abstractions are required in order to support diverse WSN
configurations and the varying user requirements for sensor data visualization. In
this paper, we present the design of an application server for WSNs and the im-
plementation of a server prototype referred to as TUTWSN Application Server
(TAS). TAS offers services for permission management, information storing, vi-
sualization of sensor data, and messaging required for receiving sensor data from
the WSNs in real-time.

1 Introduction

Wireless Sensor Networks (WSN) are emerging ad-hoc networks that may consist of
thousands of sensor nodes combining wireless networking with environment sensing
and data processing [1]. Sensors are autonomous devices that are capable of coopera-
tively monitoring physical and environmental conditions, such as temperature, sound,
vibration and motion at different locations. The information from WSNs can be used
in various applications for home and industrial environments. The WSN configurations
are adjusted to the different environments with varying requirements for accessing and
visualizing sensor data. In most cases the sensor data is not public. Especially in the
industrial environment, means for altering the permissions to access information or a
certain application is required. Due to the varying user requirements, a possibility to
alter the WSN implementation and configuration without changes to the end user ap-
plications is required. On the other hand, it must be possible to present the sensor data
with new methods without changing the underlying WSNs.

In this paper an application server for WSNs is designed. This server offers solutions
to the varying user requirements and operates as a platform for sensor network applica-
tions. The main challenges of collecting and presenting continuously changing sensor
data are solved in the server. This requires mechanisms for publishing information from
the WSNs, solutions for scalable information storing and means for sensor data visu-
alization. User groups recognized by the server are software developers, administrators
and the end users. The end users can access sensor network applications implemented
on top of the server platform through World Wide Web (WWW). For software de-
velopers the server provides a way to distribute applications and hasten development

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 248–257, 2008.
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by enabling the reuse of commonly required features of sensor network applications.
The administrators are offered services for the administration of applications, permis-
sions and users. The presented design is applied to a server prototype named TUTWSN
Application Server (TAS). The work for this paper has been carried out by the DACI
research group [2] in the Tampere University of Technology (TUT). The implementa-
tion of TAS is currently used and evaluated together with our own WSN technology
called TUTWSN [3]. It should be noted that TAS does not depend on a particular WSN
technology and can be used e.g. with ZigBee [4].

This paper is structured in the following way. Section 2 discusses research related to
WSNs and sensor network applications. The design of TAS is presented in Section 3.
The implementation of TAS is described in Section 4. Section 5 presents a case appli-
cation named the Weather Service. Section 6 concludes the paper.

2 Related Research

Most of the WSN research concentrate on the low level properties of sensors such as
energy consumption, hardware systems and communication protocols. Less research is
related to the sensor network applications and application platforms.

Liferay Portal [5] and Joomla [6] are Web-based gateways for users to locate relevant
content and applications. They support user management and permission management
combined with administration applications but lack services for WSNs. CORIE [7],
Glacsweb [8], PODS [9] and Wisden [10] are examples of standalone sensor network
applications targeted to environmental monitoring. They do not concentrate on support-
ing different WSN implementations or permissions.

GSN [11] is a software middleware for a variety of WSNs. It aims to facilitate the
programming of sensor network applications and provides means for abstracting from
the implementation details of access to sensor data. NanoMon [12] is a sensor net-
work monitoring software which provides visualization of sensor network topology
and sensor data. NanoMon supports sensor data storing and provides plug-in capability
for adding and removing custom user interface (UI) components. In the decentralized
architectures of NanoMon and the GSN, the main functionality is implemented in a
single application. This application operates as a server and a middleware software as
well as handles information storing and visualization of sensor data. Neither GSN nor
NanoMon provide user management or permission management, which are essential
requirements for TAS.

TAS combines the functionality of a Web portal with features serving WSNs. Un-
like NanoMon and GSN, TAS separates the middleware software from the information
storing and visualization services. Also, TAS relies on a centralized architecture, where
an application server handles information distribution and contains the main business
logic. The centralized architecture provides ease of use for the user groups of TAS.
New end users can register to TAS and the administrator can adjust permissions to sen-
sor data by giving the end users access to a number of sensor network applications.
All applications are accessed through TAS, and occasionally new applications emerge
without any updating or other tasks required from the end user. Potential scalability
problems are the down-side to using a centralized architecture.
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3 Design of TUTWSN Application Server

On the highest level, TAS architecture is a three-tier client-server architecture. TAS users
form the first tier. The functionality of TAS forms the second tier and the database the
third tier. Data produced by the wireless sensors is distributed to the end users as shown in
Fig. 1. TAS offers two abstraction layers between the end users and the wireless sensors.
The first abstraction layer is formed by the WSN Gateways, which operate as message
oriented middleware software between the WSNs and the application server. The WSN
Gateways hide the low level hardware and communication details of the sensors. All
communication between the WSNs and sensor network applications go through the WSN
Gateways. Therefore, various types of WSNs can be integrated to TAS by implementing
new middleware applications handling WSN specific messaging. The deployment of the
WSN Gateways varies and the TUTWSN Gateway can run on the application server or
on a remote PC connected to the Internet. The second abstraction layer is between the end
users and TAS. It concerns the way of accessing sensor data and turning it into valuable
services for the end users. TAS is responsible for distributing the sensor data received
from the TUTWSN Gateways in a suitable form for different types of client applications
including a Web browser, a cell phone and an email client.

Fig. 2 illustrates the layered architecture of TAS, which consists of the applications,
service framework, server platform and the information storing layers. The server plat-
form layer holds the communication, WSN management and permission management

Fig. 1. High level architecture of the application server
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modules. Applications are implemented on top of the service framework, which pro-
vides support for multiple types of client applications and means for separating the
business logic from the data presentation.

TAS messaging enables loosely coupled, real-time messaging between sensor net-
work applications. The design of TAS messaging uses the message dispatcher architec-
ture. TAS handles registrations of new messaging components and dispatches messages
to the registered message consumers. The benefit of the architechture is that it allows
new sensor network applications, which are the messaging components, to be added
and removed even at runtime.

A sensor application can use the TAS messaging directly or it can connect to an
external WSN interface module referred to as gateway component. The separation of
external WSN interfaces into multiple gateway components implies modular develop-
ment and addresses performance problems, as the synchronously offered services form
a potential pitfall on high network loads. An external WSN interface offers an alter-
native interface to the TAS messaging that is more suitable e.g. for Web browsers. An
interface includes also additional functionality, such as refining stored sensor data into
graphs and maps, the implementation of registration services and the management of
users and permissions. This liberates developers from implementing these services sep-
arately for each application.

The WSN management consists of the SensorMaster component that implements the
management interface. It allows applications running inside TAS to create new WSNs
and query sensor data and information about sensors. When a new WSN is created, the
SensorMaster initializes messaging channels for the WSN and inserts required infor-
mation to the underlying databases.

Permission management allows managing permissions on user, group and role lev-
els. For the end users, permission management shows as limited access to information.

Server platform

Information Storing

Service Framework

Sensor network 
applications

Applications for permission 
management and administration

Permission database Databases for sensor 
network applications 

WSN Management

Permission ManagementCommunication

External WSN Interfaces

TAS Messaging

messaging components

gateway components
PermissionMaster

SensorMaster

Fig. 2. The layered architecture of TAS
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For the software developers, permission management offers interfaces for accessing
and altering permissions. For the administrators, it means an easy way to administrate
permissions to information and applications. The security is applied with the TAS mes-
saging and permission management. Before dispatching a message, the TAS messaging
component checks whether the source is permitted to send the message to the target
from the PermissionMaster. If the permissions are insufficient, the message is dropped.

Scalability in information storing is taken into account by query optimization and
architectural designing. The architectural solution for scalability is the separation of
data into multiple databases and regular adjustments to the granularity of information.
Information related to users, groups and services is stored in a permission database.
Sensor data is stored in application specific databases, which are maintained by engine
applications responsible for validating, filtering and storing sensor data. A vast amount
of sensor data can make the data querying slower and slower by time. For instance, few
applications require six temperature measurements per minute for the whole previous
year from every sensor of the WSN. The engine applications in TAS create daily reports
of the sensor data and then remove old data as time goes by. This keeps the sensor data
querying fast without losing any important sensor data as only the granularity of saved
information changes.

4 Implementation of TUTWSN Application Server

TAS is built on top of the JBoss application server [13]. Fig. 3 sums up the main tech-
nologies and their targets of use in TAS. The Java 2 Platform, Enterprise Edition (J2EE)
[14] forms the core of the server-side implementation technologies. Extensible Markup
Language (XML) technologies and Java 2 Platform, Standard Edition (J2SE) were used
in the client-side implementation of sensor network applications. Hypertext Transfer
Protocol (HTTP) with Secure Sockets Layer (SSL) are used to enable implementing
services for light weight clients. Java Message Service (JMS) is used extensively in-
ternally in server-side, but also for communicating with more feature-rich Java-based
client applications. Service Oriented Architecture Protocol (SOAP) [15] and XML were
used due to their neutrality to the used programming language. They allow access to the
stored information with third party software. The Structured Query Language (SQL),
Java Database Connectivity (JDBC) and Open Database Connectivity (ODBC) were
used when storing sensor data. A number of applications described in Table 1 were im-
plemented on top of TAS, which serve the purpose of piloting different kinds of sensor
network applications targeted to either public or selected groups of end users.

Four gateway components which form the external TUTWSN interfaces of TAS were
implemented. They include the GraphGateway, MapGateway, ExternalServiceGateway
and the JMSGateway. The GraphGateway returns an image of sensor data graph in re-
sponse to HTTP requests containing a set of parameters. The MapGateway is similar to
the GraphGateway but it returns images of maps representing WSNs. The ExternalSer-
viceGateway can be used for querying information about users and their permissions
using SOAP. The JMSGateway is responsible for receiving sensor data messages from
the TUTWSN Gateways and delivering those messages to the sensor data alerts and
other applications running inside TAS.
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SQL, JDBC, ODBC

DBMS, RDBMS

J2SE, Java 
Web Start

XHTML, 
HTML, CSS

AJAX, 
Javascript

JMS, SOAP, XML

TAS Messaging

Java Servlets, Web Services

External WSN Interfaces

PHP, J2EE, JNDI, JMX, MBeans

TAS components, applications

Server-side

Information Storing

HTTP, TCP/IP, SSL

Communication

Client-side 

Fig. 3. Technologies and their targets of use

Table 1. Applications implemented on TAS

Application Description
Administration Applications
Administration Manage permissions, users, user groups, roles and other applica-

tions.
Registration Open registrations and create new end users.
Sensor Network Create logical WSNs and manage WSN specific settings
UI Applications
Sensor Alert Service Create alerts when sensor reaches a certain value.
Weather Service Observe temperatures on maps and graphs. A TUTWSN is tested

for environmental monitoring purposes.
Truck Tracking Service Monitor movements of trucks and temperatures inside a truck. A

mobile TUTWSN is tested for object tracking.
TUTWSN Control Panel End users can configure and monitor TUTWSN in real-time.
Engine applications
TUTWSN Gateway The message oriented middleware software for TUTWSN.
TUTWSN DBEngine Stores diagnostic information and measurements from a TUTWS-

Nfor analysis and research purposes.
WSDBEngine Stores sensor data for a given set of sensors. Clears old sensor data

and calculates daily reports of the sensor data. Used by the Weather
Service.

Sensor Data Alerts Receive and analyze sensor data. React by sending SMS and e-mail
alerts when the received sensor data meets certain conditions. Used
by the Sensor Alert Service.
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The backbone of TAS messaging is the JMS. The goal of the implementation is to
secure remote JMS connections using SSL and to provide custom permissions for mes-
saging. Two virtual messaging channels are created for each WSN. Their purpose is to
separate and limit access to sending and receiving messages with different natures in
each WSN. The other channel is used for control messages and the other for monitor-
ing messages. The monitoring messages contain sensor data produced by the sensors.
The control messages alter the state of the sensors. The end users have different levels
of permissions to the WSNs. Based on these permissions, the sensor network applica-
tions register as message consumers and producers to each messaging channel. This
mechanism allows that, a user might have the permission to send control messages to
his own WSN and only receive monitoring messages from other WSNs. When a new
messaging component registers as a consumer or a producer of messages to a certain
messaging channel, TAS will check permissions to the WSNs and either accept or deny
the registration.

JMS technology was selected because the publish/subscribe messaging model pro-
vided by JMS matches well to the needs of TAS messaging. JMS implementation
in JBoss also provides scalability and automatic load balancing features. SOAP over
HTTP provides an alternative to JMS when implementing TAS messaging. The benefit
of SOAP is interoperability, as SOAP implementations exist for a variety of program-
ming languages and JMS is Java specific. The downside of SOAP compared to JMS
is the request-reply nature of communication. Sensor network applications would be
forced to do continuous queries for acquiring the real-time sensor data from TAS. Also
the efficiency of SOAP is a liability, as XML parsing of SOAP messages is likely to be
inefficient compared to the handling of serialized Java objects in JMS. Although JMS
lacks the interoperability provided by Web Services and SOAP, it suits better to the
requirements of TAS messaging.

5 Case Application: The Weather Service

The Weather Service is a sensor network application that reports measurements of air,
water and ground using maps, graphs and textual summaries. End users can access both
historical and current values of the measurements and browse daily reports of the mini-
mum, maximum and average values. An engine application calculates the daily reports
and collects sensor data from WSNs distributed to the end users. A TUTWSN given to
an end user is formed by a hardware kit including a gateway sensor and a set of wireless
sensors. Fig. 4 shows prototypes of these sensors. The wireless sensors are configured to
measure targets such as the air and the ground. Using the administration applications of
TAS, the administrator sets up the initial permissions and sensor properties before hand-
ing out the hardware kit. The new owner of the sensors must plug the gateway sensor
into the Internet and deploy the wireless sensors. After that, he can optionally name the
sensors and set their locations in the Weather Service application interface. End users of
the Weather Service can contribute and offer content to the application by setting their
sensors public. Initially only the owner of a sensor is able to observe it. As the amount
of users increase, the Weather Service covers locations from ever wider areas.
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Fig. 4. TUTWSN sensor prototypes

The fetching of temperatures is presented in Fig. 5. A user requests a temperature
report from the Weather Service application with a Web browser. The Weather Service
forwards the request to the GraphGateway component of the external WSN interface,
which in turn forwards it to the SensorMaster. Finally, the SensorMaster queries his-
tory data from the database. The GraphGateway accepts HTTP requests and returns
replies in PNG format. The benefit of using a separate component to draw graphs is
that the component can be reused in other services. The communication between the
SensorMaster and the external service gateway use Java messaging.

sensor data 
(Java Collection)

DB

SQL

Show 
report

Weather Service
Application : SensorMaster: GraphGateway

GetSensorData()GetSensorData()

sensor data 
(PNG format)

Fig. 5. The use of external WSN interfaces to fetch weather data

Fig. 6 shows the Map Page of the Weather Service. The maps are provided by the
Google Maps API [16] with custom extensions for adding the measurement labels on
the map. With the help of Asynchronous JavaScript and XML (AJAX), the UI works
and feels as a desktop application.

A total of 6899 source lines of code was required to implement the Weather Ser-
vice. Our experiments showed that using the precalculated daily reports in sensor data
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Fig. 6. The Map Page of the Weather Service

querying and graph drawing has a substantial effect on performance. A TUTWSN con-
sisting of twenty temperature measuring sensors produced about 25 000 rows of sensor
data in approximately one week. When using the precalculated reports, the query dura-
tions with varying time intervals up to 22 weeks remain nearly constant. When fetching
the same information from the raw data, the query durations seem to grow exponen-
tially. This proves that scalability should be taken into consideration when designing
information storing for WSNs.

6 Conclusions

TAS is used as a platform for sensor network applications. These applications are used
regularly by both public and selected groups of end users. The main challenges for
designing TAS arouse from the goal of collecting and presenting continuously chang-
ing sensor data. This required support for variation in the WSN configurations and the
user requirements, mechanisms for publishing information from WSNs, solutions for
scalable information storing, and means for sensor data visualization.

Because functionality shared by many sensor network applications is already imple-
mented in TAS, developers can focus on application specific problems, which leads to
advances in WSN research. Emerging WSN technologies and various types of WSNs
can be integrated to TAS by implementing new middleware applications handling the
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WSN specific matters. Due to the proven functionality and the sensor network applica-
tions, TAS is in position to move to production state.

References

1. Culler, D., Estring, D., Srivastava, M.: Overview of sensor networks. IEEE Computer, Spe-
cial Issue in Sensor Networks, 41–49 (2004)

2. DACI Research Group: Daci homepage, http://www.tkt.cs.tut.fi/research/
daci

3. Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Ultra low energy wireless temperature
sensor network implementation. In: Proc. 16th IEEE Int. Symp. Personal Indoor and Mobile
Radio Comm (PIMRC 2005), Berlin, Germany, September 11–14 (2005)

4. ZigBee Standards Organization: ZigBee Specification, Document 053474r13 (December
2006)

5. Liferay, Inc.: Liferay portal (visited) (January 24, 2008), http://www.liferay.
com/web/guest/products/portal

6. Joomla! Core Team: Joomla! (visited) (January 24, 2008), http://www.joomla.org/
7. Center for Coastal and Land-Margin Research: Corie about corie (visited) (January 24,

2008), http://www.ccalmr.ogi.edu/CORIE
8. Guizzo, E.: Into deep ice [ice monitoring]. IEEE Spectrum 42(12), 28–35 (2005)
9. Biagioni, E.: The remote ecological sensor network (visited) (January 24, 2008),

http://www.pods.hawaii.edu
10. Paek, J., Chintalapudi, K., Cafferey, R., Govindan, R., Masri, S.: A wireless sensor network

for structural health monitoring: Performance and experience. In: Proceedings of the Second
IEE Workshop on Embedded Networked Sensors (May 2005)

11. Global Sensor Networks Team: GSN (visited) (January 24, 2008),
http://gsn.sourceforge.net/

12. Yu, M., Junkeun, S., JinWon, K., Kee-Young, S., Pyeong, S.: Nanomon: A flexible sensor
network monitoring software. Advanced Communication Technology. In: The 9th Interna-
tional Conference, vol. 2, pp. 1423–1426 (February 2007)

13. Red Hat Middleware, L.: Jboss application server (visited) (january 22, 2008),
http://www.jboss.org/products/jbossas

14. Sun Microsystems: Java 2 platform, enterprice edition (J2EE) overview (visited) (January
24, 2008), http://java.sun.com/j2ee/appmodel.html

15. W3C: Soap specifications (visited) (January 28, 2008), http://www.w3.org/TR/soap
16. Google: Google Maps API (visited) (January 24, 2008), http://www.google.

com/apis/maps/

http://www.tkt.cs.tut.fi/research/
daci
http://www.liferay.
com/web/guest/products/portal
http://www.joomla.org/
http://www.ccalmr.ogi.edu/CORIE
http://www.pods.hawaii.edu
http://gsn.sourceforge.net/
http://www.jboss.org/products/jbossas
http://java.sun.com/j2ee/appmodel.html
http://www.w3.org/TR/soap
http://www.google.
com/apis/maps/


Embedded Software Architecture for Diagnosing
Network and Node Failures in Wireless Sensor Networks

Jukka Suhonen, Mikko Kohvakka, Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology, Department of Computer Systems
P.O. Box 553, FI-33101 Tampere, Finland

{jukka.suhonen,mikko.kohvakka,marko.hannikainen,
timo.d.hamalainen}@tut.fi

Abstract. Wireless Sensor Networks (WSNs) consist of embedded and distrib-
uted sensor nodes that operate on harsh operating conditions and with limited en-
ergy resources. To ensure the desired level of service, it is essential to detect and
correct occurring network and node problems. In this paper, we propose a diagnos-
tics software architecture for WSNs consisting of self-diagnostics on embedded
sensor nodes and management tools for network analysis. We define a minimum
set of diagnostics information that needs to be collected for analyzing the network
errors and performance. To minimize communication overhead, collected infor-
mation is categorized and only needed categories are requested from nodes. The
diagnostics architecture is verified with a practical WSN implementation.

1 Introduction

Wireless Sensor Network (WSN) may consist of thousands of randomly deployed em-
bedded nodes that self-organize and operate autonomously. A WSN node combines
environment sensing, data processing, and wireless networking with extremely low en-
ergy and cost. Sensed data is routed through multiple hops to a sink node that operates
as user interface or gateway to other networks. The applications for sensor networks
range from home and industrial environments to military uses [1].

Ideally, a WSN adapts to changing operating conditions autonomously. A network
self-configures for optimal performance and lifetime, therefore making centralized
maintenance unnecessary. In practice, a network experiences several issues that limit
the self-configuration. For example, too long links between deployed sensor nodes or
interferences from other wireless networks cause unreliability. While some of the issues
can be eliminated with a careful deployment, a practical network might also encounter
unexpected problems, such as software failures or logical errors in protocols and algo-
rithms. As sensor networks become more complex, it is increasingly more important
to collect diagnostics information that allows detecting the problems and identifying
their causes. Rather than only informing problems after they already have occurred, the
diagnostics should allow detecting arising issues.

Attaching cables to diagnose embedded nodes is not feasible and often not even
possible. For example, a network might be deployed on hazardous or unaccessible en-
vironment. Therefore, a distributed mechanism to collect the diagnostics information is
required.

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 258–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Most of the reseach on WSN diagnostics concentrate on detecting node failures [2]
or correcting sensor readings [2, 3].

A centralized approach that distinguishes a node failure from depletion is proposed
in [4]. As nodes send their energy information to manager, a fault is assumed if a node
does not reply to a query but should have energy left. [5] presents a reputation-based
authentication mechanism that detects misconfigured or malicious nodes in the neigh-
borhood. In [6], a distributed approach is used to detect faulty nodes. A node queries
its neighbors and concludes that a neighbor has failed if it gives an invalid reply or fails
to reply. The problem with these approaches is that they do not give a reason for the
failure. Thus, if a failure is due to a network error, e.g. interference, replacing a failed
node does not help as the new node will experience similar errors.

Collecting practical diagnostics information for network analyzation is barely re-
searched for WSNs [7] and most of the existing approaches concentrate only on mon-
itoring sensor readings and topology [8]. [9] concentrates on distributed debugging of
sensor nodes but network performance is uncovered. When a fault, e.g. a deadlock or an
application specific error, is detected, a node sends an error report to a sink and enters a
mode in which a node can be debugged remotely. [10] presents a software architecture
for monitoring and controlling WSNs. Only few collected diagnostics types are defined,
comprising energy, neighbors, and link qualities. Diagnostics overhead is reduced with
aggregation, although an exact method is not specified.

This paper presents WSN diagnostics targeted at measuring network and node per-
formance and fault detection. As such, it is complementary with the research proposals
that consider the reliability of sensor readings. The presented diagnostics
comprise the collection of self-diagnostics information on sensor nodes and manage-
ment tools for analyzing the data. While the related proposals concentrate only on de-
tecting faults, our approach determines the reasons for misbehavior, therefore allowing
correcting the problem. Unlike [10], our approach specifies exact metrics that are re-
quired for diagnosing a distributed wireless network. Instead of aggregating diagnostics
and thus possibly losing invaluable measurement results, we propose minimizing the
overhead by categorizing diagnostics and transmitting only categories that are required
for analysis. The presented diagnostics is tested and implemented on a practical WSN
environment.

This paper is organized as follows. Section 2 describes the design of the diagnos-
tics architecture. Self-diagnostics collected on each node are described in Section 3. A
prototype implementation is presented in Section 4. Finally, Section 5 concludes the
paper.

2 WSN Diagnostics

2.1 Design Goals and Assumptions

The design goals for the diagnostics are to measure performance, detect node failures,
and determine reason for the failures. As the primary purpose of a WSN is to col-
lect sensor readings, diagnostics overhead must be minimized. Also, a light-weight im-
plementation is required, because most of the memory and processing resources are
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required for the normal operation. Finally, the diagnostics must tolerate packet losses,
as errors must be detected also during unreliable network conditions.

This paper assumes a synchronized, low duty cycle WSN using a clustered topology,
because such WSN can be considered the most demanding in respect of collected diag-
nostics. Still, the proposed diagnostics is generalizable to other WSNs by disregarding
irrelevant information. Duty cycling and clustering are used in WSNs to save energy.
In a low duty cycle operation, transceiver is active only part of the time, while remain-
ing time is spent on a low energy state. Clustering increases energy efficiency, because
energy consuming forwarding is performed by a small subset of nodes that are referred
to as headnodes, while the other nodes, referred to as subnodes, can sleep most of the
time.

2.2 Diagnostics Architecture

The diagnostics architecture is shown in Fig. 1. Each node collects self-diagnostics in-
formation regarding the node itself and nodes in its neighborhood. The self-diagnostics
enables measuring network Quality of Service (QoS), determine problems, and detect
software failures. The information is stored for later analysis. The data can be stored
in the WSN, e.g. on a node itself, or collected on a sink node, from which the infor-
mation may be queried. In the implemented prototype, the data is stored in a database
server to allow fast querying and maintaining longer history records. The management
tools collect information for decisions that require human interaction. As detecting the
reason for a problem from raw diagnostics values is hard, the management tools visual-
ize the network status and emphasize the problematic behavior with graphs and alerts.
Based on the analyzed performance, network parameters can be adjusted for refining the
trade-off between performance and energy. However, such optimization is outside the
scope of this paper. In this paper, configuring denotes instructing the self-diagnostics on
sensor nodes to select the collected diagnostics information and the collection interval.

To avoid complexity on resource constrained nodes, a node pre-processes diagnostics
data is only slightly. As extensive analyzation requires global knowledge and computa-
tional resources, complex analysis is performed on the management tools that are run
outside the sensor network. The approach does not significantly increase overhead on
network, because an intensive diagnosing is switched on only on-demand.

Fig. 1. Design of the distributed WSN diagnostics
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3 Self-diagnostics on Embedded Nodes

Each node collects self-diagnostics information about its operation and transmits the
data to a sink node as shown in Fig. 2. It should be noted that the design does not limit
the number of sinks that monitor the network. Because the information required for
diagnostics is related to several layers, each layer maintains information about its state
and operation. In the physical layer, diagnostics information comprises battery voltage,
and hardware status of sensors and other peripherals that is determined based on per-
formed self-tests. Self-test information allows disregarding invalid sensor readings and
replacing misbehaving nodes, whereas voltage enables an early warning before deple-
tion. Medium Access Control (MAC) layer maintains connectivity information to the
neighbors and active routes are recorded on the routing layer. Forward queue informa-
tion required for analyzing network load and delays is maintained in between MAC and
routing layers.

A self-diagnostics control module is used to collect and combine the data from differ-
ent layers to get extensive information about the state of the node. The control module
also maintains statistics from individually measured parameters that is used quantify re-
sources status, e.g. average link reliability. Self-diagnostics application communicates
with a sink node by utilizing the underlying protocol stack. The application receives
commands from the sink that determines the content of collected data and instructs
the control module to gather the requested information. Then, the application reports
back to the sink. The sink may command the application to perform one-shot queries or
generate diagnostics packets periodically.

The architecture requires only minimal changes a typical sensor code, because WSN
nodes usually use diagnostics information internally to make operational decisions. For
example, link reliability information is crucial when selecting highest reliability route.

3.1 Diagnostics Categories

As all of the self-diagnostics information may not be needed at the same time, the
diagnostics data is divided into several categories. Diagnostics data on each category is
generated in a separate packet. The benefit of this approach is that only the categories
of interest are transmitted and different transmission intervals may be used for each
packet. For robustness, most of the diagnostics are expressed as counter values, thus

Fig. 2. Collection of network diagnostics on embedded sensor nodes
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allowing missing a packet without the loss of information. The categories and collected
statistics are summarized in Table 1.

Node information category collects generic information about a node. If the node
information shows symptoms of misbehavior, more extensive diagnostics are switched
on. Network and node events assign a reason for occurred events that allows evaluating
the behavior of a node. Traffic information is collected in cluster traffic and node traffic
categories. Knowledge about the traffic is essential when determining throughput and
reliability. The node traffic gives more detailed information by detailing per link traffic,
but has a higher overhead. Network topology category gives an overview of network
structure. The topology information is collected separately, because it can be collected
infrequently when network is static.

3.2 Node Information

The node information packet is used to get an overall impression of the performance.
It allows detecting the symptoms of misbehavior and thus, the need for collecting other
diagnostics categories. Additionally, if a node does not perform sensing, the node infor-
mation is regarded as a keep-alive message indicating that a node is still available.

Voltage information is used to determine when to replace a node. A comparison
against stored voltage values gives the rate of voltage drop and thus energy depletion.
Too high depletion rate indicates performance problems and a requirement for deeper
examination of the node. Queue usage and delay are used to detect forwarding prob-
lems. High queue usage increases delays and is usually an indication of a performance
bottleneck. However, if the delays are high while queue usage is low, a next hop link
might not be reliable which causes retransmissions.

Table 1. Collected self-diagnostics and diagnostics categories

Category Statistics Description
Node Voltage Latest voltage measurement
information Queue statistics Average and maximum queue usage and delays

Role Indicates headnode or subnode
Boots Boot counter
Network scans Network scan counter
Route changes Cumulative number of route changes

Network Event The descriptor of an occurred event
and node Reason A reason for the event
events Neighbor A reference to a neighbor node relating to the event
Network Neighbor Neighbor identifier (e.g. unique address)
topology Link quality Link quality indication

Channel Frequency that the neighbor operates on
Sleep schedule Duty cycle timing relative to the sender

Cluster Channel usage Average and maximum channel usage
traffic RX/TX counters The number of attempted and failed operations
Link Neighbor Neighbor identifier
traffic RX/TX counters The number of attempted and failed operations
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A role parameter tells whether a node acts as a headnode or saves energy as subn-
ode. The information is crucial when evaluating the used clustering algorithm and de-
termining network coverage as only headnodes forward traffic. Boot, network scan, and
route change counters are used to detect instability. The boot counter is stored in a
non-volatile memory and incremented on every boot. An increase in the boot counter
is always an indication of severe hardware or software problems. Network scans, route
changes, and role changes are a part of the normal network activity. However, too fre-
quent changes indicate instability that decrease performance and increase energy usage.

3.3 Network and Node Events

Network and node events are used to express the reasons for performed operations on a
sensor node. A diagnostic event identifies the performed operation, reason, and a neigh-
bor reference. The operation is a network scan, a synchronization loss, a route change, a
role change, or a boot. The reason is a simple integer value with a predetermined mean-
ing that describes the cause for an event, thus giving an information why the sensor
software performed a certain operation. The neighbor reference identifies neighbor ad-
dress that relates to the event, for example the neighbor to which a synchronization was
lost. Communication overhead is minimized by fitting several events into one packet.

3.4 Network Topology

Network topology is constructed by requesting each node to send diagnostics regarding
their neighbors. An average link quality to each neighbor is used to detect weak and
therefore unreliable links. If a node has only neighbors with weak links, user interaction
is required to add new nodes that can forward traffic more reliably.

Simultaneous transmissions within an interference range cause collisions and thus
performance degradation. For detecting overlapping communication periods and eval-
uating channel assignment algorithms, nodes send channel and sleep schedule infor-
mation of their neighbors acting as a headnode. As sleeping often causes a significant
forwarding delay, the sleep schedule information also enables evaluating end-to-end
latencies.

3.5 Cluster and Link Traffic

The traffic information is divided into as cluster traffic and link traffic. The main dif-
ference between these is that the cluster traffic handles aggregates, whereas the link
traffic maintains separate counters for each neighbor. Thus, cluster traffic has less over-
head and is useful for identifying bottlenecks or clusters that have low reliability. Then,
the collection of link traffic counters can be switched on in the neighborhood of the
problematic cluster to get detailed traffic profile and identify badly behaving nodes.

The traffic counters comprise transmission (TX) and reception (RX) successes and
failures. A transmission failure is detected when an acknowledgment is not received.
However, reception failures cannot be detected directly, because a receiver does not
usually know when to expect a transmission with contention based channel access.
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Therefore, the reception failure counter is increased when either a missed sequence
number is detected or a duplicate is received. A duplicate means that a sender did not
receive acknowledgment packet and had to retransmit. The reasons for unreliability can
be concluded together with the neighbor information, e.g. low Received Signal Strength
Indication (RSSI) is a possible reason for unreliability. However, if link has high RSSI,
the unreliability might be caused by interference.

In addition to the traffic counters, the cluster traffic contains channel that describes
the utilization of the wireless channel. A high channel usage indicates a bottleneck and
thus the requirement to add more headnodes to balance the load. Only a headnode sends
the cluster traffic information.

4 Prototype Implementation

WSN diagnostics architecture is implemented on Tampere University of Technology
Wireless Sensor Network (TUTWSN) platforms consisting of energy-efficient protocol
stack [11] and sensor hardware [12] that are optimized with cross-layer design. The
TUTWSN embedded sensor node that is used in the implementation is presented in
Fig. 3. The platform uses a PIC18F8722 [13] MicroController Unit (MCU) that exe-
cutes 2 Millions Instructions Per Second (MIPS). The node is powered with two 1.5 V
AA batteries. The MCU includes an Analog-to-Digital Converter (ADC) that is used to
measure battery voltage and read analog sensors. For environmental monitoring, a node
is fitted with temperature, accelerometer, and carbon dioxide sensors. The platform
contains a Nordic Semiconductor nRF24L01 RF transceiver that operates at 2.4 GHz
frequency and supports transmit powers of -20 dBm. . .0 dBm.

The implementation architecture is shown in Fig. 4. The collected self-diagnostics
are transmitted through gateway nodes to a WSN server. Instead of accessing the WSN
directly, User Interfaces (UIs) connect to the WSN server. The benefits of this approach
is that WSN server provides a centralized access control with authentication. Addition-
ally, the server hosts several web applications that allow monitoring the sensor network

(a) (b)

Fig. 3. TUTWSN embedded sensor node a) hardware architecture, b) prototype and its weather-
proof casing
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without installing special software on a client computer. Diagnostics data is stored to a
database, which allows evaluating long term performance on the network.

The operation of management tools is divided between the WSN server and con-
figuration and monitoring UIs on a client computer. The WSN server pre-processes the
received data for the database and utilizes back-end services for sending threshold based
alerts to network administrator with e-mail. A client UI shown in Fig. 5 combines the
analyzation and configuration.

4.1 Memory Requirements and Communication Overhead

The self-diagnostics implementation takes 4 kB program memory and 300 B data mem-
ory. The self-diagnostics application and the self-diagnostics control module are in-
cluded in the memory requirements. However, the memory requirements for collecting
per protocol layer diagnostics are not included, because the information is needed for
a normal node operation in any case. For example, MAC layer needs to maintain link
information even when the self-diagnostics are not transmitted to a sink.

The self-diagnostics information is transmitted in five packets types that correspond
with the self-diagnostics categories. Due to transceiver limitations, a fixed packet size of
32 B is used, which leaves 18 B per packet for payload after MAC and routing headers.
For fully utilizing the available payload, network and node events are included in the
node information packet.

To reduce the payload requirements, the size of a counters in bits (b) is optimized as

b = log2 e · (1 + m) · i, (1)

where e is the maximum number of measured events per second, m is the maximum
allowed number of consecutively missing packets, and i is the maximum transmission
interval. The counters are optimized to allow 5 minutes interval between received pack-
ets and one missed packet. With these optimizations, the size for of a diagnostic counter
ranges from 8 to 12 bits.

For simplicity, diagnostics data is transmitted periodically. Fig. 6 compares the re-
sulting diagnostics per node overhead against the amount of sensor data. Diagnostics
overhead is increased, when more accurate diagnostics are switched on. Collecting all

Fig. 4. Implemented architecture of WSN diagnostics
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Fig. 5. User interface visualizing network topology and connectivity between nodes. The dialog
shows the communication periods of selected clusters.
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Fig. 6. Diagnostics against sensor data overhead on the implementation

diagnostics requires sending 4 packets periodically. As packet sizes are fixed, diagnos-
tics and sensor data overheads are equal when sensor data interval is 5 minutes. When
sensor data is sampled often, the diagnostics overhead is insignificant. To further reduce
the overhead, it would be possible to transmit diagnostics packets only when diagnostics
counters have changed.

5 Conclusions

This paper presents a diagnostics software architecture for diagnosing node and net-
work errors in resource constrained embedded distributed systems, such as WSNs. The
architecture consists of self-diagnostics on embedded nodes and management tools for
analyzing network.A minimum set of diagnostics information that needs to be col-
lected for analyzing the network errors and performance is defined. To minimize com-
munication overhead, the self-diagnostics information is categorized and only needed
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categories are requested from nodes. According to prototype implementation, only
slight communication overhead is required.
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Abstract. The Sesame system-level simulation framework targets efficient de-
sign space exploration of embedded multimedia systems. Even despite Sesame’s
efficiency, it would fail to explore large parts of the design space simply because
system-level simulation is too slow for this. Therefore, Sesame uses analytical
performance models to provide steering to the system-level simulation, guiding
it toward promising system architectures and thus pruning the design space. In
this paper, we present a mechanism to calibrate these analytical models with the
aim to deliver trustworthy estimates. Moreover, we also present some initial eval-
uation results with respect to the accuracy of our calibration mechanism using a
case study with a Motion-JPEG encoder.

1 Introduction

The increasing complexity of modern embedded systems, which are more and more
based on (heterogeneous) MultiProcessor-SoC (MP-SoC) architectures, has led to the
emergence of system-level design. A key ingredient of system-level design is the no-
tion of high-level modeling and simulation in which the models allow for capturing the
behavior of system components and their interactions at a high level of abstraction. As
these high-level models minimize the modeling effort and are optimized for execution
speed, they can be applied at the early stages of design to perform, for example, archi-
tectural Design Space Exploration (DSE). Such early DSE is of eminent importance as
early design choices heavily influence the success or failure of the final product.

With our Sesame modeling and simulation framework [1,2], we target efficient
system-level design space exploration of embedded multimedia systems, allowing rapid
performance evaluation of different architecture designs, application to architecture
mappings, and hardware/software partitionings. Key to this flexibility is the separation
of application and architecture models, together with an explicit mapping step to map
an application model onto an architecture model.

Although Sesame’s system-level simulation allows for efficiently evaluating differ-
ent application/architecture combinations, it would fail to explore large parts – let alone
the entire span – of the design space. This is because system-level simulation is simply
too slow for comprehensively exploring the design space, which is at its largest during
the early stages of design. For this reason, Sesame uses analytical models [3,4] to pro-
vide steering to the system-level simulation, guiding it toward promising system archi-
tectures and therefore allowing for pruning the design space. These analytical models,
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which include models for performance, power and cost estimation, are used for quickly
searching the design space by means of multi-objective optimization using evolution-
ary algorithms. So far, this analytical modeling stage lacked a systematic method for
deriving the model parameters that specify application requirements and architecture
capabilities. Clearly, the accuracy of these analytical models is highly dependent on the
correct determination of these parameters.

In this paper, we focus on the performance estimation part of our analytical mod-
els (i.e. the power and cost models are not addressed) and present a technique based
on execution profiles, referred to as signatures, that allows for deriving the application
and architecture specific parameters in these analytical performance models. Using a
preliminary experiment with a Motion-JPEG encoder application and an MP-SoC ar-
chitecture, we also show initial results of the accuracy of our approach by comparing
the estimations of our signature-based analytical model with those from simulation.

The remainder of the paper is organized as follows. In the next section, we introduce
the basic analytical system model [3,4] for which we want to derive the model parame-
ters. Section 3 describes how we determine application specific model parameters via a
profiling mechanism based on signatures. Section 4 describes how architecture specific
parameters are derived using a comparable mechanism. In Section 5, we put together
the pieces of the puzzle presented in Sections 3 and 4 to actually construct signature-
based analytical performance models. Section 6 presents initial results of the evaluation
of the accuracy of our approach using an experiment with a Motion-JPEG encoder ap-
plication. Section 7 describes related work, and Section 8 concludes the paper.

2 Basic Analytical System Model

In the Sesame framework, applications are modeled using the Kahn Process Network
(KPN) [5] model of computation in which parallel processes communicate with each
other via unbounded FIFO channels. By executing the application model, each Kahn
process records its actions in order to generate its own trace of application events which
is necessary for driving an architecture model. There are three types of application
events, divided in two groups: execute events for computational behavior and read and
write events for communication behavior.

The architecture models in Sesame simulate the performance consequences of the
computation and communication events generated by an application model. Architec-
ture models are constructed from building blocks provided by a library containing tem-
plate models for processing cores, and various types of memories and interconnects.

Since Sesame makes a distinction between application and architecture models, it
needs an explicit mapping step to relate these models for co-simulation. In this step, the
designer decides for each application process and FIFO channel a destination architec-
ture model component to simulate its workload. This is an important step in the design
process, since the final success of the design can be highly dependent on these mapping
choices. To decide on an optimum mapping, many instances need to be considered (and
thus simulated). In realistic cases, in which the underlying architecture is also varied
during the process of design space exploration, simulation of all points in the design
space is infeasible. Therefore, analytical models are needed to prune the design space,
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steering the designer towards a small set of promising design points which then can be
simulated. The remainder of this section elaborates on the basic analytical performance
model [3,4] we use in Sesame for design space pruning, after which the subsequent
sections present our signature-based mechanism to ‘calibrate’ this analytical model.

The application models in Sesame are represented by a graph KPN = (VK ,EK) where
the set VK and EK refer to the Kahn processes and the directed FIFO channels between
these processes, respectively. For each process a ∈VK , we define Ba ⊆ EK to be the set
of FIFO channels connected to process a, Ba = {ba1, . . . ,ban}. For each Kahn process,
we define a computation requirement, shown with αa, representing the computational
workload imposed by that Kahn process onto a particular component in the architecture
model. The communication requirement of a Kahn process is not defined explicitly,
rather it is derived from the channels attached to it. We have chosen this type of defin-
ition for the following reason: if the Kahn process and one of its channels are mapped
onto the same architecture component, the communication overhead experienced by the
Kahn process due to that specific channel is simply neglected. For the communication
workload imposed by the Kahn process, only those channels that are mapped onto dif-
ferent architecture components are taken into account. So our model neglects internal
communications and only considers external communications. Formally, we denote the
communication requirement of the channel b with βb. To include memory latencies into
our model, we require that mapping a channel onto a specific memory asks computation
tasks from the memory. To express this, we define the computational requirement of the
channel b from the memory as αb. Here, it is ensured that the parameters βb and αb are
only taken into account when the channel b is mapped onto an external memory. The
actual determination of the above model parameters, which is the contribution of this
paper, will be addressed in the next section.

Similarly to the application model, the architecture model is also represented by a
graph ARC = (VA,EA) where the sets VA and EA denote the architecture components
and the connections between the architecture components, respectively. In our model,
the set of architecture components consists of two disjoint subsets: the set of proces-
sors (P) and the set of memories (M), VA = P∪M and P∩M = /0. For each processor
p ∈ P, the set Mp = {mp1, . . . ,mp j} represents the memories which are reachable from
the processor p. We define processing capabilities for both the processors and the mem-
ories as cp and cm, respectively. These parameters need to be set such that they reflect
processing capabilities for processors, and memory access latencies for memories. The
determination of these parameters will be addressed in Section 4.

The above model needs to adhere to a number of constraints, such as that each Kahn
process has to be mapped to a processor, each channel has to be mapped to a processor
(in case of local communication) or memory, and so on. For a formal description of
these constraints, we refer to [3,4].

3 Application Requirements

As indicated in the previous section, we need to determine the model parameters for ap-
plication requirements (αa, αb and βb) and architecture capabilities (cp and cm). To this
end, we present an approach based on execution profiles of application events, referred
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to as signatures, to determine these model parameters. In the remainder of this section,
we focus on the derivation of the model parameters – via these signatures – for applica-
tion requirements. As will become clear, our approach strictly adheres to the separation
of concerns concept [6], separating application (requirements) from architecture (capa-
bilities) signatures.

A signature of a Kahn process represents its computational requirements. These
process signatures describe the computational complexity at a high level of abstrac-
tion using an Abstract Instruction Set (AIS). Currently, our AIS consists of the small
set of abstract instruction types as shown in Table 1(a)1. To construct a signature, the
real machine instructions that embody the computation, derived from an Instruction Set
Simulator (ISS), are first mapped onto the AIS, after which a compact execution profile
is made. This means that the resulting signature is a vector containing the instruction
counts of the different AIS instructions. The first column in Table 1(a) shows the signa-
ture (vector) index that each AIS instruction type corresponds to.

To illustrate the process of determining the process signatures, consider Table 1(b)
which shows an example event trace of Kahn process k1. When deriving the signature
of process k1, only the execute events in its event trace are considered. Each execute
event comes with an identifier of an operation, to indicate which operation was exe-
cuted. The signature of k1 is the sum of the signatures of the operations executed by k1.
In the example of Table 1(b), operations op1 and op2 have signatures that describe the
computational requirements of these operations. Now, assume that an ISS generates the
trace of (in this case, ARM) instructions as shown in the first column of Table 1(c) for
op1. The next step is to classify these instructions (is it a basic integer instruction, or a
memory operation, or a branch instruction, etc.). In other words, the assembly instruc-
tions have to be mapped to the AIS instructions defined for our signatures. The result
of this classification is shown in the second column of Table 1(c). Then, a signature for
op1 can be generated based on the counts of the AIS opcodes. For op1, this gives

op1.signature = [3,15,1,0,3,9,0,0] (1)

with the AIS counts ranked according to the first column of Table 1(a). Using the same
method, a signature for op2 can be generated. Assume that its signature is:

op2.signature = [8,17,8,0,2,29,2,0] (2)

Then, using these signatures we can answer the original question, that is, calculate the
signature of process k1 (i.e., αk1 ). According to the event trace of process k1, op1 was
executed two times, op2 one time. Thus,

k1.signature = 2op1.signature+ op2.signature = [14,47,10,0,8,47,2,0] (3)

An important thing to note is that in practice, if an operation is executed more than
once, the derived signatures for each execution of the operation may not be equal (due
to data dependencies, or pseudo-random behaviour of the operation). In that case, the
operation’s signature becomes the average signature of all executions of that operation.

1 In this paper, we focus on programmable cores as processor targets, but the AIS also consists
of a special “co-processor” instruction that can be used for modeling dedicated HW blocks.
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Table 1. Table (a) shows the currently defined AIS instructions with their index in the vector-
based process signatures. Table (b) lists the event trace of process k1, and Table (c) shows an
execution trace of op1 as obtained by an ARM ISS (left column) and the corresponding AIS
instructions (right column).

Signature index AIS opcode Description
1 AIS BMEM Block memory transfers
2 AIS MEM Memory transfers
3 AIS BRANCH Branches
4 AIS COPROC Co-proc. instructions
5 AIS IMUL Int. multiplications
6 AIS ISIMPLE Simple Int. arithmetic
7 AIS OS Software interrupts
8 AIS UNKNOWN Non-mappable instruction

(a)

read f2

execute op1
write f1

read f2
execute op2
write f1
execute op1
write f1

write f1

ARM instruction AIS opcode
bl 0x81c4; AIS BRANCH
mov ip, sp; AIS ISIMPLE
stmdb sp, fp, ip, lr, pc;! AIS BMEM
sub fp , ip , #4; AIS ISIMPLE
sub sp , sp, #12; AIS ISIMPLE
ldr r2 , [fp , #−16]; AIS MEM
ldr r3 , [fp , #−20]; AIS MEM
add r2 , r2 , r3 ; AIS ISIMPLE
ldr r3 , [fp , #−24]; AIS MEM
rsb r3 , r3 , r2 ; AIS ISIMPLE
str r3 , [fp , #−24]; AIS MEM
ldr r2 , [fp , #−16]; AIS MEM
ldr r3 , [fp , #−20]; AIS MEM
add r2 , r2 , r3 ; AIS ISIMPLE
ldr r3 , [fp , #−24]; AIS MEM
mul r3, r2 , r3 ; AIS IMUL

ARM instruction AIS opcode
str r3 , [fp , #−16]; AIS MEM
ldr r2 , [fp , #−20]; AIS MEM
ldr r3 , [fp , #−16]; AIS MEM
mul r3, r2 , r3 ; AIS IMUL
str r3 , [fp , #−24]; AIS MEM
ldr r2 , [fp , #−16]; AIS MEM
ldr r3 , [fp , #−24]; AIS MEM
add r2 , r2 , r3 ; AIS ISIMPLE
ldr r3 , [fp , #−20]; AIS MEM
mul r3, r2 , r3 ; AIS IMUL
str r3 , [fp , #−16]; AIS MEM
sub sp , fp , #12; AIS ISIMPLE
ldmia sp, {fp, sp, pc}; AIS BMEM
mov ip, sp; AIS ISIMPLE
stmdb sp, fp, ip, lr, pc;! AIS BMEM

(b) (c)

A signature of a FIFO channel describes the load induced by the channel on memory
components (i.e., αb and βb from Section 2). This communication requirement of a
FIFO channel depends on the size of the token (in bytes) sent via the channel, and the
total number of tokens sent. In our application models, the size of the tokens sent via a
FIFO channel is fixed. The number of tokens sent via a FIFO channel can be extracted
from the Kahn process’ event trace. Each write-event in an event trace contains data
about to which communication port the token was sent. So, the signature of a FIFO
channel f is a two-element vector containing the number of tokens sent via the channel
and the size of each token:

f .signature = [ntokens,nsize] (4)

For example, assume the event trace of process k1 in Table 1(b) and a token size for
channel f1 of nsize = 12 bytes. Since process k1 writes four times a token of 12 bytes to
f1 (see Table 1(b)), the signature of f1 thus becomes:

f1.signature = [4,12] (5)
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4 Architectural Capabilities

Previously, the computational and communication requirements of an application have
been defined. In this section, the computational and communication capabilities of
processors and memories will be defined. These capabilities will also be encoded as
(vector-based) signatures.

If a Kahn process k1 is mapped onto a processor p1, then the number of cycles p1 is
busy processing k1 (denoted as T (p1)) can be calculated as a function of the signatures
of k1 (the computational requirements) and p1 (the processor capabilities):

T (p1) = f (k1.signature, p1.signature) (6)

The aim is to find or define both p1.signature and the function f in (6). With these, we
can calculate the number of cycles a processor is busy processing the execute events
emitted by Kahn processes mapped onto the processor.

Using an ISS, we can measure how many cycles a certain operation takes when
executed on a specific processor (like an ARM). If this is repeated for many operations,
a training set can be built. Using this training set, the computational capabilities of
a processor (i.e., its signature) can be derived by, for example, linear regression, or
techniques used in the field of machine learning.

Using the example from the previous section, a (very small) training set can be made.
This training set consists of the signatures of op1 and op2 and the associated cycle
counts. Let us assume that executing op1 took 185 cycles, and that op2 took 369 cycles
when executed on an ARM processor. Since a training set consists of a list of vectors
(operation signatures), and a list of cycle counts, this problem can be solved using
the least-squares method. For example, let SM be the matrix with the signatures of
operations op1 and op2 as rows, p1.signature be the weight vector we want to calculate
for processor p1, and c be the vector with cycle counts for each row in SM. Then,
SM · p1.signature = c is solved using the least squares method.

(
3 15 1 0 3 9 0 0
8 17 8 0 2 29 2 0

)
· p1.signature =

(
185
369

)
(7)

The signature of p1 is the the vector consisting of weights for each AIS instruction. The
unit of the elements in the vector is ‘cycles per instruction’. Note that these weights can
be adapted in order to perform high-level architectural design space exploration for the
given processor (e.g., make multiplications more/less expensive, etc.).

p1.signature = [2.19,7.11,1.62,0.0,1.19,7.4,0.33,0.0] (8)

Given an operation signature s that is not included in the training set, the estimated num-
ber of cycles on p1 for that signature is simply the inner product of s and p1.signature.

The signature (and thus the communication capability) of a memory component
(i.e., cm) is a two-element vector [rread,rwrite] that only consists of the (average) read
and write latencies. So far, in contrast to processor signatures, we have not developed
any methods to get reliable memory signatures. Instead, a designer may use values from
memory data sheets to create a memory signature.
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5 Analytical Performance Estimation

In the previous sections, portions of a (signature-based) analytical performance model
were presented. In this section, these portions will be forged together to get an analytical
performance model for an architecture.

T c(p) ← 0
foreach k ∈ Xp do

foreach f ∈ FIFOChannelsk,ext do
b ← f .signature[ntokens] · f .signature[nsize]
m ← M ( f )
if f is an incoming channel of k then

T c(p) ← T c(p)+b/m.signature[rread]
end
if f is an outgoing channel of k then

T c(p) ← T c(p)+b/m.signature[rwrite]
end

end
end

Algorithm 1. Calculation of T c(p)

First, some definitions have to be made. The set Xp is the set of processes that are
mapped onto processor p. A similar definition applies to Xm, the set of channels mapped
onto memory m. M ( f ) denotes the memory onto which channel f is mapped and
FIFOChannelsk,ext is the set of channels of process k that are mapped onto an exter-
nal memory.

The time T e(p) a processor p is spending on executing operations is the inner prod-
uct of the sum of the signatures of all processes mapped on p, with the signature of p.

T e(p) =

〈(
∑

k∈Xp

k.signature

)
, p.signature

〉
(9)

The time T c(p) the processor is communicating depends on the number of bytes sent
and received via FIFO channels that are mapped on an external memory. This quantity
can be calculated by Algorithm 1.

The total time processor p is busy processing read, write, and execute events is

T (p) = T e(p)+ T c(p) (10)

The number of cycles T (m) a memory m is busy sending or receiving data is calculated
in Algorithm 2, in a similar way as T c(p).

The maximum processing time of an architecture with a certain mapping depends
on the architecture component with the largest processing time. Therefore, we need to
solve

minmax

(
max
p∈P

T (p),max
m∈M

T (m)
)

(11)
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6 Experimental Results

In this section, mapping exploration results of the signature-based analytic method will
be compared to simulation results using a Motion-JPEG (M-JPEG) encoder applica-
tion. The target MP-SoC architecture we used in this experiment consists of four ARM
processors with local memory and a crossbar interconnect. The design space we con-
sidered for this experiment consists of all possible mappings of the M-JPEG tasks (i.e.
processes) on the processors in the MP-SoC platform.

b ← 0
foreach f ∈ Xm do

b ← b+ f .signature[ntokens] · f .signature[nsize]
end
T (m) ← b/m.signature[rread]+b/m.signature[rwrite]

Algorithm 2. Calculation of T (m)

Before the M-JPEG application model was mapped on the architecture model, the
application was compiled using an ARM C++ compiler, and executed within the SimIt-
ARM instruction set simulator environment [7]. The generated ARM instruction traces
were used to create the application and architecture signatures. These signatures were
subsequently used for determining the parameters in our analytical performance model,
as was previously explained. Note that this process is only a one-time effort.

Since the design space in our experiment is relatively limited (consisting of 4096
different mappings), it was possible to evaluate all of these mappings, both analytically
as well as by simulation using our Sesame framework. The analytical and simulation
results are shown in Figure 1. Note that only the first fifty mappings are depicted due to
space limitations (to avoid cluttering in the graph). Each mapping gets a certain index.
The order of the mappings in Figure 1 is more or less arbitrary. Mappings with succes-
sive indices are not necessarily related to each other. In this experiment, we measured
an average relative error of our analytical model compared to simulation of only 0.1%,
with a standard deviation of 0.2. From this, it can be concluded that the performance es-
timates of our analytic method are promising since they show small errors with respect
to the simulation-based estimates.

It should be noted however that this is only a preliminary evaluation, using some
simplified assumptions and circumstances: we obtained the signatures by training with
the application itself, and the application used in this case study is still a fairly static,
pipeline-based application of which the workload is well suited for prediction. Also,
the application does not cause any contention on the interconnect. In an additional ex-
periment, we artificially generated excessive network contention for the M-JPEG appli-
cation. As a result, the error increased to an average of 14% with a standard deviation
of 26. But since in this case the analytical estimates were optimistic and still showed
the correct performance trends, we believe that these results are still very promising in
the scope of high-level design space pruning (the pruning does not throw away possi-
ble good candidate mappings). We also stress that the evaluation time of our analytical
performance models is several orders of magnitude smaller as compared to Sesame’s
system-level simulations.
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Fig. 1. Comparison between simulation and analytical methods of M-JPEG mappings on a
crossbar-based multiprocessor architecture

7 Related Work

Much work has been performed in the area of software performance estimation [8],
including methods that use profiling information, typically gathered at the instruction
level. For example, in [9] a static software performance estimation technique is pre-
sented which uses profiling at the instruction level and which includes the modeling
of pipeline hazards in the timing model. In [10], a source-based estimation technique
is proposed using the concept of ”virtual instructions”. These are similar (albeit a bit
more low level) to our AIS instructions, but which are directly generated by a com-
piler framework. Software performance is then calculated based on the accumulation of
the performance estimates of these virtual instructions. The idea of convolving applica-
tion and machine signatures, where the signatures contain coarse-grained system-level
information, has also been applied in the domain of performance prediction for high-
performance computer systems [11]. In [12], a workload modeling approach based on
execution profiles is discussed for statistical micro-architectural simulation. Because
they address micro-architectural simulation, their profiles include much more details
(such as pipeline and cache behavior), while we address the system level at a higher
level of abstraction. In [13], the authors suggest to derive a linear model from a small
set of simulations. This method tries to model the performance of a processor at a meso-
scopic level. For example, cache behaviour and pipeline characteristics are taken into
account. The significance of all cache and pipeline related parameters is determined by
simulation-based linear regression models. This may be comparable with the ‘weight’
vector discussed in Section 4. Another interesting approach is presented in [14], in
which the CPI for in-order architectures is predicted using a Monte Carlo based model.
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8 Conclusions

In this paper, we presented a technique for calibrating our analytical performance mod-
els used for system-level design space pruning. More specifically, we introduced the
concept of application and architecture signatures, which can be related with each other
to obtain performance estimates. Using a preliminary case study with a Motion-JPEG
encoder application, we showed that our signature-based analytical performance model
shows promising results with respect to accuracy. But since this application still is rel-
atively static in its behavior, we need to extend our experiments in the future to also
include more dynamic applications. Moreover, we need to further study the (off-line)
generation of training sets for deriving processor signatures, as well as to investigate
extending our signatures to better capture micro-architectural behavior.
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Abstract. One of the major challenges of designing heterogeneous re-
configurable systems is to obtain the maximum system performance with
efficient utilization of the reconfigurable logic resources. To accomplish
this, it is essential to perform design space exploration (DSE) at the
early design stages. System-level simulation is used to estimate the per-
formance of the system and to make early decisions of various design
parameters in order to obtain an optimal system that satisfies the given
constraints. Towards this goal, in this paper, we develop a model, which
can assist designers at the system-level DSE stage to explore the utiliza-
tion of the reconfigurable resources and evaluate the relative impact of
certain design choices. A case study of a real application shows that the
model can be used to explore various design parameters by evaluating the
system performance for different application-to-architecture mappings.

1 Introduction and Related Work

In recent years, reconfigurable architectures have received ever increasing at-
tention due to their adaptability and short design time. The main advantage
of reconfigurable computing is its ability to increase performance with acceler-
ated hardware execution, while possessing the flexibility of a software solution.
Reconfigurable systems can speed up the application’s execution time by map-
ping selected application kernels onto reconfigurable hardware. In the context
of heterogeneous reconfigurable systems, to make early design decisions such as
mapping of an application onto reconfigurable hardware, it is essential to perform
Design Space Exploration(DSE). DSE environments assist designers in rapid per-
formance evaluation of various parameters such as: architectural characteristics,
application-to-architecture mappings, scheduling policies and hardware/software
partitioning. This enables a designer to identify design candidates that satisfy
functional and non-functional design constraints, e.g: performance, chip area,
power consumption etc. DSE environments and methodologies help traversing
(typically) huge design spaces efficiently, thus performing DSE at a high level of
abstraction facilitates design decisions to be made at very early design stages,
which can significantly reduce the overall design time of a system.

M. Berekovic, N. Dimopoulos, and S. Wong (Eds.): SAMOS 2008, LNCS 5114, pp. 279–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



280 K. Sigdel et al.

Though system-level DSE modeling and simulation of reconfigurable system
has been touted for quite some time, there are not many tools and models
available for system-level DSE for reconfigurable systems. Authors in [1] have
presented a modeling methodology for dynamic scheduling of run-time reconfig-
urable architectures based on discrete event systems. Papers [2] and [3] present
a system-level modeling framework for performance evaluation and rapid explo-
ration of different reconfiguration alternatives. Similarly, authors in [4] present
an approach for simulating and estimating the performance of reconfigurable
architectures based on SystemC. However, these tools and methods are quite
limited in number and their level of maturity is not yet very high. Typically,
either such tools are not generic enough to be used for every kind of reconfig-
urable architectures, or they have a restricted focus and therefore cannot exploit
simultaneously all the potential aspects of dynamic reconfiguration (such as area
usage, reconfiguration overheads and obtainable speedup). In order to fill this
gap, in this paper, we present a model for system-level DSE for reconfigurable
systems, which can simulate and estimate performance for reconfigurable archi-
tectures at a higher abstraction level. For this, we use the Sesame framework
[5] as a modeling and simulation platform and the Molen architecture [6] as an
example of a reconfigurable architecture. The main contributions of this paper
are as follows:
– Extension of the Sesame framework to support partially dynamic reconfig-
urable architectures.
– Construction of a Sesame model for Molen, which captures the most important
behavioral aspects of the architecture and can assist a designer to evaluate the
performance of the Molen architecture at the early stage of system-level DSE.
– Initial experimental validation of DSE for a real application - which shows
various kinds of explorations and validations that can be performed with the
proposed model.

2 The Molen Architecture

Reconfigurable Processor

Core 
Processor

CCU-code 
unit

Memory

Arbiter

Memory 
MUX

Fig. 1. Molen Architecture

The Molen polymorphic processor is established
on the basis of the tightly coupled co-processor
architectural paradigm [6][7]. It consists of two
different kinds of processors: the core processor,
which is a general-purpose processor (GPP), and
the Reconfigurable Processor (RP). The recon-
figurable processor is further subdivided into the
ρμ-code unit and custom configured unit (CCU)
(see Figure 1). These two processors are con-
nected to one arbiter. The arbiter controls the
co-ordination of the GPP and RP by directing instructions to either of these
processors. In order to speed up the program by running on reconfigurable hard-
ware, parts of the program code running on a GPP can be implemented on the
CCU. The code to be mapped onto the RP is annotated with special pragma
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directives. When the arbiter receives the pragma instruction for RP, it initiates
an operation in the reconfigurable unit, gives the data memory control to the
RP and drives the GPP into a wait state. When the arbiter receives an end
signal from the RP, it releases the data memory control back to the GPP, which
can then resume its execution. An operation executed by the RP is divided into
two distinct phases: set and execute. In the set phase, the CCU is configured to
perform the required operation and in the execute phase the actual execution of
the operation is performed.

3 Sesame Modeling Approach

The Sesame modeling and simulation environment [5] is geared towards fast
and efficient exploration of embedded multimedia architectures, typically those
implemented as heterogeneous MPSoCs. Sesame adheres to a transparent simu-
lation methodology where the concerns of application and architecture modeling
are separated. An application model describes the functional behavior of an
application and an architecture model defines the architectural resources and
constraints. For application modeling, Sesame uses the Kahn Process Network
(KPN) model of computation [8], which consists of concurrent processes that
communicate data using blocking read/non-blocking write synchronization over
unbounded FIFO channels.

The processes contain functional application code together with annotations
that generate events describing the actions of the process. Communication events
Read (R) and Write (W) describe FIFO channel communication and the Exe-
cute (EX) event describes computation performed by a Kahn process (typically
a function). These events are collected into event traces that are mapped, using
an intermediate mapping layer, onto an architecture model (see Figure 2; note
that the mapping layer is not shown in detail). Unlike the application model,
which is un-timed, the mapping and architecture layers are modeled together
in a timed simulation domain. The mapping layer consists of Virtual Processors
(VPs) and bounded size FIFO channel components which are connected using
the same network topology as the application model. The main purpose of the
mapping layer is to forward the event traces to components in the architecture
model (application processes onto processors and communication channels onto
communication structures) according to a user-specified mapping. The compo-
nents in the mapping layer simulate synchronization of communication events
in such a way that forwarded events are “safe” meaning they do not cause
any deadlock due to unmet data dependencies when mapped onto shared re-
sources.

In the architecture model, the architectural timing consequences of the events
are modeled. Interconnection and memory components model the utilization and
the contention caused by communication events. Processor components model
processor utilization using a lookup table that relate computational (EX) events
to an execution latency. These latency values may be obtained from literature,
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hardware measurements, rough estimates or from more detailed simulators such
as described in [9].

4 The Molen Model with Sesame

In this section, the Sesame model for the Molen architecture will be described in
detail. To create a model with correct Molen reconfiguration behavior, we need
to add three extra synchronization mechanisms: one at each Sesame layer, i.e.
application, mapping and architecture. In the following sections we describe how
these synchronizations are modeled in the different Sesame layers.

4.1 Application Modeling

The Molen architecture exhibits a tightly coupled co-processor paradigm and
allows CCUs to run as a co-processor, which adds control dependencies between
the GPP and CCUs. Moreover, in Molen, due to its reconfigurable nature, there
can be extra dependencies between the tasks mapped to CCUs due to the re-
source constraints imposed by the FPGA. In some cases, these added depen-
dencies can lead to a deadlock situation in the architecture model. To avoid
this deadlock, we have restricted the KPN graphs in the application layer to
be static and acyclic. Additionally, to make sure only safe events are forwarded
from the mapping layer to the architecture models, we modified the application
by adding a Kahn channel from the application’s output (or sink) node to its
source node(s). Furthermore, we also added a token channel between each pair
of communicating processes (see the dashed arrows in the application layer of
Figure 2). Unlike the other channels in the Kahn network (which communicate
data), these channels only carry a token that needs to be read by the source node
before each iteration. For a streaming application, such as depicted in Figure 2,
this means that after node A has written data to node B, A has to wait for the
token from sink-node F before it can write a new data item to the stream. To
achieve this, Kahn processes code has been slightly adapted to read and write
the token channels, which adds special read(RT ) and write (WT ) events to the
application trace.

This way the pipeline parallelism is removed from the application which avoids
two data-dependent tasks to be active simultaneously on the architecture model.
This will prevent the deadlock situation in the Molen model that might occur
due to the co-processor behavior and the resource constraints. It is important
to note that the sink-to-source channel does not remove all the parallelism in
the application, particularly “fork-and-join” parallelism still remains available
between tasks that are not data dependent such as between the task pairs (C,D)
and (E,D). To enable reconfigurability in the architecture model, one additional
change to the application model is required. At the end of each iteration of a
task, we add a special execute(pragma) event. Similar to the pragma directive in
Molen, this event indicates that if the task is mapped onto FPGA, the FPGA
can be reconfigured to execute another task after its completion. We use the
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KPN graphs generated by PN-gen tool[10], for which an iteration is defined as
a set of read (R), execute (EX) and write (W) events for a particular task.

4.2 Mapping Layer

The mapping layer forwards the events (read, execute and write) from the ap-
plication model as soon as their dependencies are met. To avoid the deadlock
mentioned earlier, we also need to perform an additional synchronization in the
mapping layer. This synchronization will guarantee that events for a certain
task will only be forwarded once all its input data is available. To this end, the
virtual processors(VP) in the mapping layer are extended such that a VP first
checks the availability of all its input data by checking a special token chan-
nel for all of its inputs. When all data is available, it proceeds as normal and
forwards R,W and EX events to the architecture. Finally, it writes a token to
all of its output token channels to signal to all subsequent nodes that data is
available. Since VPs have no knowledge of the structure of an application, they
cannot autonomously determine when all input is available or when to signal
“output available” to other nodes. Therefore reading and writing of token chan-
nels is managed explicitly by the application model and the events created by
the special reads(RT ) and writes(WT ) are used by the VPs in the mapping
layer to perform the extra synchronization in the timed simulation domain.
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Fig. 2. Three layers in Sesame’s infrastruc-
ture for Molen

Note that these synchronization events
are not forwarded to the architecture
model: only timing consequences of
normal R,W or EX events are mod-
eled there. The modifications to the
application model essentially allow the
mapping layer to dynamically deter-
mine a valid, deadlock-free schedule
for application events, which is needed
to successfully drive the underlying
Molen architecture model. However,
these modifications limit the class of
Kahn process networks that can be
run, because not all Kahn networks
can be extended easily with the re-
quired token channels. This is another
reason why currently we restrict the
KPN graphs to be static and acyclic.
In the future, the model can be refined
and these restrictions can be relaxed.

4.3 Architecture Modeling

Architecture models in Sesame are constructed from generic building blocks
provided by a library, which contains templates for processors, memories, buses,
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on-chip networks and so on. We created a model for the Molen architecture using
these components and by instantiating processor components with different pa-
rameters to model the respective properties of the GPP and the RP (i.e. CCUs).
In addition to the general behavior of a processor, CCUs have been given some
extra parameters such as area occupancy and reconfiguration delay. In Figure
2, this architecture is shown together with the mapping of an application. In
the following sections we describe the GPP/FPGA synchronization mechanism
to model co-processor behavior and the modeling of reconfigurable hardware.
These are the components that would cause the simulation to deadlock, without
the modifications described above.

Modeling the Arbiter

As mentioned before, the Molen pragma directive has been modeled as a spe-
cial execution event in the application layer which is passed to the architec-
ture model. The arbiter has been modeled as a component in the architec-
ture layer which controls the execution of the GPP and CCUs (see Figure 2).

GPP CCU1 Arbiter

T0
Request Lock()

Grant Lock()

CCU2

Request Lock()

Reply()

T1

UnLock()

Grant Lock()

Request Lock()

Grant Lock()
T3

UnLock()

Reply()
UnLock()

Reply()

T4

T5

T2

Fig. 3. GPP/CCU, Arbiter Interaction

When a processor (GPP
or CCU) receives the
special pragma event, it
requests a lock from the
arbiter. The arbiter co-
ordinates the co-processor
behavior by granting ex-
clusive control to either
the GPP or the CCUs.
To illustrate the interac-
tion between the GPP,
CCUs and the arbiter,
consider Figure 3. The fig-
ure shows these interac-
tions in the case where
GPP and CCUs want to
execute at the same time.
In this particular case,
GPP gets the lock to ex-
ecute at T0. At time T1,
CCU1 requests execution. Since the GPP is still executing, CCU1 goes to a
wait mode. When the GPP finishes its execution, it returns the lock at time
T2 and execution is granted to CCU1. At time T3, CCU2 requests execution.
Since CCU1 and CCU2 both execute in parallel on the FPGA, CCU2 also gets
the lock and can start execution. At time T4, CCU1 finishes its execution, but
CCU2 is still executing on the FPGA and only finishes its execution at time T5.
At time T4, if the GPP was to request the lock for execution, then it has to wait
until time T5. In this way, the arbiter guarantees that all the CCUs finish their
execution before it releases the lock.
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Modeling Reconfiguration

The Molen architecture supports dynamically reconfigurable FPGAs with partial
reconfiguration capability. By reconfiguring part of the FPGA while other parts
continue execution normally, it is possible to significantly reduce the impact of
the (large) reconfiguration overhead on the total execution time. To capture this
behavior in our model we model reconfiguration as follows. A CCU component
represents the implementation of a Kahn process in hardware, which means that
there are as many CCUs as the number of processes mapped onto the FPGA.
Each CCU has an associated reconfiguration delay to configure the task and the
percentage of area it occupies. In the current version of our model, we assume
a static mapping which means we know in advance which tasks are mapped
onto the CCUs. The CCUs are synchronized by a reconfiguration manager (see
Fig. 2). The reconfiguration manager is responsible for configuring and releasing
CCUs based on the availability of the area on the FPGA. When a CCU wants
to execute a task, it sends a request to the reconfiguration manager to be config-
ured; the manager checks for the availability of area on the FPGA and decides
whether or not to configure a particular CCU. If there is enough area available
immediately, then the CCU will be configured, otherwise it will be blocked until
sufficient area is available. Once the necessary area is available and the CCU is
configured, the CCU will be blocked to model its reconfiguration delay before it
starts the real execution of the events. In this way, the effects of the reconfig-
uration delay on the system performance is modeled. The interaction between
CCUs and the reconfiguration manager is shown in Figure 4 where Fschd is the

CCU4

unconfigure()

CCU2CCU3 FschdCUU1

unconfigure()
reply()

configure(area1)
area1<=Available_Area]

configure(area3)

[area2<=Available_Area]
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reply(OK)

CCU4 = first_fit()

configure(area4)
[area4>Available_Area]

reply()
CCU3 = first_fit()

unconfigure()

reply()

reply()
unconfigure()

configureON()

reply(WAIT)

configure(area2)

reply (OK)

configureON()

reply(WAIT)

Fig. 4. Interaction between CCUs and Reconfiguration Manager
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reconfiguration manager. For experimental purposes, in this paper, we have im-
plemented a simple first fit placement algorithm. In our first fit algorithm, the
first CCU which fits onto the available FPGA area will be scheduled first. How-
ever, any kind of task placement and scheduling algorithm for the reconfigurable
hardware can be implemented as a plugin to the reconfiguration manager.

5 Case Study and Preliminary Results

VideoIn VideoOut

Init

DCT

VLE

Q1 1

DCT Q2 2

DCT Q3 3

DCT Q4 4

Fig. 5. Application model

In this section, we will describe a case study
using the previously described Molen model
and we will discuss our preliminary results.
Our aim is to show what kind of experiments
and results can be obtained from the model
and what conclusions can be drawn from it.
We do not discuss the accuracy of the model,
since model validation and calibration is left
as future work. In this case study, we use a
data parallel Motion-JPEG encoder application which is mapped onto the Molen
architecture. Figure 5 shows that the DCT and Quantizer tasks of the Motion-
JPEG application are divided into 4 parallel streams (synchronization channels
are not shown in this figure). We instantiate the Molen model with 8 CCU
units. This allows us to make optimal use of the parallelism available in the
application by mapping each of the DCT and Q tasks onto a CCU. Also, note
that as discussed in Section 4.3, a CCU is represented as an implementation of a
Kahn process. The computational latency values that the GPP model component
associates with the computational events, are initialized using estimated (but
non-Molen specific) values. For the CCUs, we use the same values divided by
10, implying that the same computational event would execute 10 times faster
on the reconfigurable hardware than on the GPP. We realize that in reality
the latency of the CCU is different and does not show any dependency with
the latency of the GPP. We use this simplified assumption here for illustration
purposes. Similarly, we assume an estimated value for the reconfiguration delay
and area for each CCU.

In the first experiment, we look at the impact of different task mappings on
the total execution time in terms of simulated clock cycles. In this case, we as-
sume each task takes almost the whole area on a FPGA and we fix the size of
each CCU to 95%, thus forcing reconfiguration every time for each CCU. At
first, we map all the tasks to GPP and in each successive mapping we move
one task (either DCT or Q tasks) from GPP to CCUs. Figure 6 shows the re-
sults for these mappings. The mapping column lists the successive mappings(1st
mapping: all tasks are mapped to GPP, 2nd mapping: DCT1 to CCU and rest
to GPP, 3rd mapping: DCT1 & DCT2 to CCUs and rest to GPP and so on).
The “cycle time” column lists the total execution time for each mapping and the
last column lists the speedup for each mapping compared to the first mapping.
Because of the lower execution latency of CCUs as compared to the GPP, we
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No Mapping Cycle Time Speedup

1st First 371150560 1.000
2nd prev+DCT1 331948000 1.118
3rd prev+DCT2 292745440 1.267
4th prev+DCT3 253542880 1.463
5th prev+DCT4 217906240 1.703
6th prev+Q1 199425856 1.861
7th prev+Q2 200145472 1.854
8th prev+Q3 194465088 1.908
9th prev+Q4 188784704 1.965

Fig. 6. Results Experiment 1

Area Delay Slow Cycle Speedup
Reconf Time

95 25000 1792 188784704 1.965
75 18750 1792 175984704 2.108
50 12500 1536 137532992 2.698
30 7500 1280 140418784 2.643

Fig. 7. Results Experiment 2

might expect this to significantly increase the system performance. However, the
results show that in fact there is a non-linear trade-off. This is because, moving
the tasks to CCUs will add to the latency for reconfiguring the CCUs each time.

In the second experiment, we explore the impact of varying the CCU sizes.
Once again we simplify the model by assuming the area for DCT and Q is the
same. We scale the reconfiguration delay proportional with the CCU area, which
is true property of most current reconfigurable hardwares. As a reference map-
ping, we use the mapping that has all DCT and Q tasks on CCUs and all others
on the GPP. Figure 7 shows the results for different area and reconfiguration
delay values. It lists the cycle times and number of “slow reconfigurations”. This
is the number of times the CCU has been reconfigured when there is not enough
area for immediate execution. Moreover, it lists the speed-ups in each case when
the area varies. As it can be inferred from the results, there is a clear relation
between area and time. When CCUs occupy more area, less CCUs can be exe-
cuted simultaneously hence more reconfigurations are required implying longer
reconfiguration delay and thus longer execution time. At the same time, when
CCUs occupy less area, there are less reconfigurations and reconfiguration delay,
hence faster execution.

Finally we note that all the above system-level simulations (with the given
input consisting of 8 picture frames of 1282 pixels) can be executed in less than
0.5 second, thus allowing for extensive design space exploration.

6 Conclusion and Future Work

In this paper we have created a model for the Molen reconfigurable platform
using the Sesame framework. The case study in this paper has shown that various
design parameters such as area, reconfiguration delay and task mappings can be
explored with the current model. Due to fast execution times it can be used
to efficiently explore and evaluate different design choices of the reconfigurable
architecture. Moreover, the model is easily extensible and only few modifications
are required to the existing model for modeling various other design options.
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The current version of the model assumes static mapping (i.e. we know in
advance which tasks are mapped onto FPGA). In the future, we want to extend
the model to support dynamic (run-time) mapping of application tasks onto
reconfigurable and non-reconfigurable hardware. Additionally, we will validate
the current Molen model against a real Molen implementation to allow for final
calibration of the model in order to increase its accuracy.
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Abstract. Embedded Sensor Networks are deeply immersed in their
environment, and are difficult to protect from abuse or theft. Yet the
software contained within these remote sensors often represents years of
development, and requires adequate protection. We present a software
based solution for the Texas Instruments C5509A DSP processor which
uses object-code encryption and public-key key exchange with a server.
The scheme is tightly integrated into the tool flow of the DSP proces-
sor and compatible with existing embedded processor design flows. We
present performance and overhead metrics of the encryption algorithms
and the security protocols. We also describe the limitations of the solu-
tion that originate from its software-only, backwards-compatible nature.

1 Introduction

Securing intellectual property in embedded applications is an ever growing con-
cern for developers. These concerns are even more prevalent when such applica-
tions are deployed in unsecure and hostile environments as is often the case with
sensor networks. Code utilized on such nodes can represent a major investment
on the part of the developer, yet the code is often left unprotected. A common
fear is that such an unsecured product, discarded or stolen, appears on the black
market where it can be obtained by a competitor. Code stored in plain text could
easily be copied and deployed on a competing platform damaging the original
developers market position. Even worse in the case of critically important net-
works, code could be reverse engineered to aid in the disruption of service or
theft of sensitive data. Solutions lend themselves to hardware based approaches
for securing newly developed systems [1]. However, this leaves a great deal of
older systems that run on a legacy platform vulnerable. Rather than opting for
costly hardware retrofits for such systems, a software approach may extend the
platforms useful application life.

Our work presents such a solution for securing firmware-based intellectual
property (FIP) on embedded sensor nodes. The solution is geared to be com-
patible with the existing design flow for the Texas Instruments C5509A DSP
(C55). Figure 1 illustrates the two parts of our solution. First, tight integration
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Fig. 1. IP security schema overview

of IP encryption and the software tool-chain provides a novel and streamlined
method for the protection of firmware. This is extended with a security kernel
which provides a platform for the authentication and decryption of secured code
at boot.

Second, the security kernel negotiates a firmware based intellectual property
(FIP) decryption key from a key server at startup. The use of a key server is
required as the C55 does not posses any secure nonvolatile memory. Under the
generic nature of the implementation it can not be assumed there is hardware
present that does. However, the introduction of a key server requires an authen-
tication procedure, in order to avoid man-in-the-middle attacks. This is further
addressed in Section 6. Here, we assume that the sensor node can be reliably
authenticated by the key server. We use a public-key exchange protocol based
on an Elliptic Curve Diffie-Hellman (ECDH) protocol. The approach of stor-
ing the key off of the sensor node prevents the simple decryption of the FIP
by reverse engineering of the firmware. The firmware key can only be obtained
by booting the node and completing the key-exchange. The retrieved FIP key is
utilized internally on the processor to decrypt the firmware. As the key exchange
and decryption can occur only at boot there is no required runtime overhead.
Once the ECDH key exchange has completed, the firmware decryption service
has a footprint of only 7.3 Kbyte. To our knowledge this is the first published
result of a complete end to end implementation of a firmware encryption scheme
combined with an ECC public-key exchange on a DSP. We have verified our
approach by building an end-to-end prototype of the entire system, including
sensor node and key exchange server.

The paper is organized as follows. Section 2 outlines the assumptions that
shaped our design decisions. Section 3 covers the methodology for the encryption
and decryption of the firmware object code. Section 4 presents the implementa-
tion details of ECDH on the C55. The performance of both ECDH and firmware
encryption are reported in Section 5 and compared to other platforms. Section 6
analyzes strengths and weaknesses of our solution while Section 7 summarizes
the project and indicates areas for future work.
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2 Constraints

Our primary focus is the creation of a software-only protection mechanism to
secure intellectual property in firmware on a Texas Instruments C5509A DSP, a
16-bit processor. In addition, maximal flexibility is ensured in development, by
creating portable code in C, and by integrating the firmware encryption flow in
the C55s software development environment, Code Composer Studio 3.1 (CCS).
All additions to the tool-chain to facilitate this are also written in portable C code
for the GNU Compiler Collection 4.2.0. All encryption schemes are developed
with a minimum of 128bit AES secret key security or equivalent [3] as specified
by the NSA guidelines [2].

Given the constraints outlined above, we opted for a combination of firmware
encryption with a remote key-exchange. Indeed, as this is only a software based so-
lution the addition of a specific hardware component to securely store or generate
this key is not an option. We therefore use a public-key key exchange mechanism
to retrieve the firmware decryption key. The resulting arrangement is divided into
two distinct components, IP encryption/decryption, and key transmission.

3 IP Encryption and Decryption

3.1 Identification and Encryption

Identification and encryption are a tightly coupled step in our implementation.
The final binary requires plain text code sections. These perform such tasks
as key exchange, authentication, firmware decryption, and traditional boot up
tasks. Identification of the sensitive IP and non-critical code sections is accom-
plished during development through the built in code section pragmas made
available by CCS. The net effect of singling out only the critical IP allows code
to be selectively encrypted allowing for smaller decryption times.

Encryption of the selected code sections occurs after the compilation and
linking of the design results in a complete binary and is a post processing step.
As we have adopted the strategy of allowing individual sections of firmware to be
encrypted it is necessary that these sections are logical entities handled by the
DSP compiler and linker. As such we obtain tight integration between firmware
encryption and firmware production. A development tool included with CCS,
OFD55, provides detailed information on each section contained in a binary file,
including the size and offset of each. Figure 2 demonstrates how a compiled
binary file resulting from CCS is encrypted.

The Object Encryptor (OE) is a utility we developed that encypts a plain
text binary. The developer can choose what sections in the binary should be
encrypted by providing a sections file. The sections file only contains the names
of the identified sections to be encrypted. The offset and length of the sections
are provided by the OFD55 utility from the CCS tool chain (OFD file). The OE
next uses a designer-provided key (Key file) and an arbitrarily generated nonce
to encrypt the designated code sections. For additional security the OE allows
the use of different Keys and nonce to be used on different code section. This
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Fig. 2. Object Encryption

provides a greater flexibility in key and IP management by allowing the developer
to specify different key management policies for each section. Generating the
encrypted key stream is accomplished through AES in Counter Mode [11]. An
AES key length of 128 bits is used as to satisfy the requirements for secret level
clearance specified by the NSA standard [2]. The AES Counter mode allows the
use of a key-stream in blocks of 16 bits, as is needed for the native word length
in the C55 processor. At the same time, it also avoids the requirement that code
sections need to be a multiple of 128 bits.

Besides the encryption of firmware sections, the OE also creates an additional
data section in the resulting encrypted binary. Space for this data section is
allotted in the security kernel. The plain text data section holds the offset, size,
and nonce information for each IP sensitive code section that was encrypted.
This data section is used by the Security Kernel at boot time to locate encrypted
firmware and decrypt it into executable object code. After the OE concludes the
resulting binary will contain both encrypted and plain text code sections. Any
standard methods of deploying the binary may be then used.

3.2 Decryption in the Security Kernel

Decryption may be handled in two ways, a one time cost to decrypt all encrypted
firmware at boot or a distributed run time cost to decrypt individual sections
when needed. Regardless, decryption follows the same general methodology and
should only be performed on internal DSP memory. At any time unprotected
code only exists in the C55, where it is assumed to be secure, as the abundance
of fast and tightly controlled memory alleviates the necessity of utilizing chip
ram. JTAG and other security concerns are further addressed in Section 6 of
this paper.
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The actual decryption routines in the security kernel are always present in
plain text. However except for software integrity issues, which are addressed
in Section 6, this is not of concern. During decryption the section information
stored in the security kernel by the OE is used to set up encrypted sections for
decryption. The only missing information for decryption is the 128bit key, which
must be brought from a secure external source.

3.3 C55 Design Flow

One of the primary goals of this work is to provide an IP encryption solution that
is easily utilized across a wide series of potential target applications. As such it
is necessary to consider the development suite, design flow, and deployment for
a typical C55 implementation. A generic implementation containing assembly
and C code is compiled or assembled before being placed as dictated by the
memory map. These placed code sections are then linked appropriately before
being written to a binary output file. Any post processing is then performed
before the binary is flashed to the C55 and executed. The only additions to the
design are the addition of the security kernel which is developed with only low
level C code and assembly functions as to have as minimal impact. Inclusion of
the OE is the only addition to the flow and will generate encrypted code sections
as identified by the designer. No other design alterations are required after these
initial steps. The only remaining step is to change the boot vector of the C55 to
run the security kernel upon processor reset.

4 Key Transmission

4.1 Overview

Communication between the C55 and the key server occurs over an open un-
secure channel in our implementation. As such the establishment of a secure
channel is required before any key exchange may occur. A public key protocol
such as Diffie-Hellman is perfectly suited to such a task. Diffie-Hellman (DH)
is a well known mechanism for public key cryptography across many different
platforms. We utilize Diffie-Hellman over Elliptic Curves, which is well suited
for embedded applications. Indeed, an implementation of Elliptic Curves over
a 256 bit prime field provides equivalent security compared to an RSA key of
3072 bits, which corresponds to an 128-bit secret key. Thus, a 256-bit prime field
provides secret-level security according to the NSA standard [2].

While other highly portable C code implementations of ECDH exist (such as
LibTomCrypt [5]) these are not suited to deployment on the C55. An embedded
implementation of ECDH, TinyECC [6], requires the use of TinyOS and the
nesC compiler in the tool chain. We opted against using TinyECC as to maintain
compatibility with the existing design path. After careful consideration it was
deemed necessary to implement ECDH from the ground up. This includes the
extended precision finite field (GF) arithmetic necessary to implement EC, the
math functions to implement an EC point multiplication and the DH protocol
that relies on EC point multiplications to derive public and secret keys.
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4.2 Diffie-Hellman Protocol

ECDH is a well known exchange protocol and as such only its specific implemen-
tation will be covered. For the purpose of this implementation only one ECDH
exchange will occur during boot of the target system. During this single cycle a
public key is derived and transmitted between the DSP and server systems. Each
public key is used to derive a 128 bit private key that can be used to transmit
the IP decryption key through an AES block cipher as summarized in Fig. 3.

Fig. 3. Diffie-Hellman public key exchange and AES key derivation

Deriving a public key requires that both DSP and server sides of the scheme
use the same base point. We use the IEEE standard for the 256 GF(p) field
[7]. A single EC scalar multiplication creates the desired public key whose bit
stream including its degree is transmitted over the insecure channel. Each public
key once received by the opposite platform requires an additional scalar multi-
plication against that platforms previously determined number. The result is an
identical private key on both server and DSP sides of the implementation. The
private key is represented as a point (X,Y) of two 256 bit fields. The same AES
128 bit implementation used to decrypt the IP sensitive sections of code is uti-
lized to transmit the key. To generate the key it is necessary to reduce the 512
bits of private key into a 128 bit AES key. This compression is obtained through
a Davies Meyer hash implementation.

4.3 Elliptic Curve Arithmetic and Finite Field

Elliptic Curve arithmetic is built on top of modular arithmetic, and creates
public and secret keys by multiplying a point on an elliptic curve by a scalar
value. By default, points are represent in the affine (X,Y) coordinate system. For
efficiency reasons, embedded system implementations internally apply projective
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format (X,Y,Z) for points, and include conversions from/to affine to projective
format as needed. The IEEE standard [7] provides generic implementations for
addition, subtraction, doubling, conversion between affine and projective, and
scalar multiplication.

The modular arithmetic for point operations are based on finite field arith-
metic of either the prime ( GF(p) ) or binary ( GF(2P) ) type. We used the
GF(p) scheme, in part because an easily accessible open-source implementa-
tion was available that could be used as a golden reference [5]. Field length
for the finite arithmetic is another system parameter to choose. According to
Table 1, a secret equivalent protection for a 128-bit private key required us to
use a 256-bit prime field. GF(p) requires an efficient embedded implementation
of multi-precision arithmetic operations. However for the lowest level of these
such as addition and multiplication there is no easy access to the carry bits and
leads to large and complex implementation. To combat this problem addition,
subtraction, shift operations, and comparisons are written in assembly.

5 Results

5.1 Demonstrator Components

The demonstrator hardware contains a Spectrum Digital C55 Development Sys-
tem and a server running the key-server functionality. The communications link
between the C55 board and the server is based on USB, but easily replaceable
with other technologies. The software on the C55 DSP board includes a USB
communications library, the security kernel containing the ECDH protocol and
the Object Decryptor, and finally an encrypted C55 application. The server
server contains a similar USB library, a matching ECDH protocol and the secret
key that can decrypt the object code. Software for the C55 kit is developed in
CCS on a development system, which also contains the Object Code Encryptor.
Once the application is generated and encrypted, it is downloaded into the Flash
memory of the C55 board. The key used to encrypt the application is installed on
the Server. Next, the C55 board can be booted and will go through a complete
key exchange and application decryption sequence.

5.2 Encryption Performance for the C55

Through testing on our demonstrator components we obtained an average per-
formance of approximately 21 million cycles or 105 milliseconds for one ECDH
exchange on the C55 processor. This value is obtained by performing several dif-
ferent key exchanges with different 256-bit scalar values. We then compared this
performance with several different published implementations. The comparison
is done in seconds normalized over the operating frequency of the platform. The
results of this comparison are captured in Fig. 4. This demonstrates that our im-
plementation on a 16-bit platform compares favorable to some of the published
32-bit platforms. We also evaluated the symmetric-key encryption performance
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Fig. 4. ECDH speed comparison

on the C55 and evaluated that to be 2023 cycles per 128 bits. We can also ob-
serve that the symmetric-key encryption speed is 3 orders of magnitude faster
then public-key encryption.

For the complete protocol, we evaluated that the ECDH handshake and sub-
sequent decryption of 128 Kbytes of firmware takes about 40 million cycles on
the C55. Since ECDH consumes 20 million cycles, it thus takes roughly the same
amount of time to decrypt a block of 128 Kilobytes of code as it takes to perform
two ECC point multiplications (one complete ECDH handshake). The complete
on-chip memory space of the C55A contains 256 Kilobyte, and the security kernel
will never decrypt more than this during boot. Hence, it would be necessary to
optimize the current symmetric-key decryption speed before improving ECDH
protocol implementation. The memory footprint for the security kernel is ap-
proximately 17.3Kb or merely 6.7% of available onboard memory for the C55.
This is broken up between two sections AES and ECDH which respectively have
footprints of 7.1Kb and 13.3KB. It should be noted that ECDH also utilizes the
Rijndael algorithm to perform a Davies Meyer hash on the private key value to
generate an AES transmission key. This represents the 3.1 K byte discrepancy
in size between the two footprints. Upon retrieving the firmware key ECDH may
be discarded leaving a run time footprint of 7.1Kb for AES decryption, or 2.7%
of available memory.

6 Security Analysis

In this section, we discuss the challenges of implementing a firmware protection
technique using only software techniques. We are interested in securing off-chip
object code. Once the off-chip object code is loaded from nonvolatile memory
onto the processor and decrypted, it is no longer protected. Hence, we assume
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that the C55 processor package itself can be protected from external inspection
or tampering. This requires additional precautions, such as security measures
for the chip JTAG interfaces [12]. Securing such vulnerabilities on an existing
system is not reasonably done in a generic implementation and if possible would
require tight integration with the end application. We also assume that the
encrypted firmware itself can be trusted. Any vulnerability in this code such as
buffer overflows or unchecked data access would lead to an additional security
breach.

6.1 System Authentication and Integrity

System authentication and integrity are of crucial concern to a software only
solution. Due to the nature of the C55 and its lack of secured nonvolatile mem-
ory these issues present themselves outside the scope of such a solution. For
the purposes of this paper we thus assume that the end-user of the system is
able to guarantee the integrity of the security kernel. This is required to thwart
an attack that would compromise the platform by code injection, or through
hardware emulation. Booting with a compromised security kernel or in soft-
ware that was running on an emulated system would leave the decrypted code
sections vulnerable. Solutions that provide security kernel integrity can either
rely on physical protection, or else use a hardware-based hashing facility [13].
Processors with on-chip non-volatile memory are able to store the security kernel
on-chip [14]. For a RAM-only processor such as the C55, an add-on SHA-1 hard-
ware module with a write-only hashing facility can be used as a building block
for integrity verification. A secure hash can be combined with an encryption key
into a keyed-Hash Message Authentication Code (HMAC). This can be used to
both verify the integrity and the authenticity of the node simultaneously [15].
A failure to respond correctly to such a response would result in the denial of
a decryption key as per a key management scheme. Finally, we emphasize that
the limitations are all originating from the desire to support firmware protection
on legacy platforms. Part of our efforts has been to identify exactly those risks
mentioned above, and to analyze possible countermeasures.

7 Conclusions

We have presented a complete demonstrator for firmware code encryption on
embedded sensor nodes. Our results show that such a mechanism can be sys-
tematically integrated into a TI C55 software production flow, and that the
resulting overhead on system resources is minimal. We have achieved software-
only code security by storing secrets off-platform in a key-server. While this may
not be an option for all embedded sensor situations, it did fit the purpose of our
project. The code encryption flow is presently being adopted by our industrial
partner. We are considering further improvements on the protocol and its imple-
mentation, including hardware authentication of the C55 platform to the server
and the protection of C55 interfaces and debug ports which could affect the
sensor node at runtime.
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